These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 8520475)
1. Escherichia coli alkaline phosphatase: X-ray structural studies of a mutant enzyme (His-412-->Asn) at one of the catalytically important zinc binding sites. Ma L; Tibbitts TT; Kantrowitz ER Protein Sci; 1995 Aug; 4(8):1498-506. PubMed ID: 8520475 [TBL] [Abstract][Full Text] [Related]
2. Kinetic and X-ray structural studies of a mutant Escherichia coli alkaline phosphatase (His-412-->Gln) at one of the zinc binding sites. Ma L; Kantrowitz ER Biochemistry; 1996 Feb; 35(7):2394-402. PubMed ID: 8652582 [TBL] [Abstract][Full Text] [Related]
3. Mutations at histidine 412 alter zinc binding and eliminate transferase activity in Escherichia coli alkaline phosphatase. Ma L; Kantrowitz ER J Biol Chem; 1994 Dec; 269(50):31614-9. PubMed ID: 7989332 [TBL] [Abstract][Full Text] [Related]
4. Probing the role of histidine-372 in zinc binding and the catalytic mechanism of Escherichia coli alkaline phosphatase by site-specific mutagenesis. Xu X; Qin XQ; Kantrowitz ER Biochemistry; 1994 Mar; 33(8):2279-84. PubMed ID: 8117685 [TBL] [Abstract][Full Text] [Related]
5. Structure and mechanism of alkaline phosphatase. Coleman JE Annu Rev Biophys Biomol Struct; 1992; 21():441-83. PubMed ID: 1525473 [TBL] [Abstract][Full Text] [Related]
6. Kinetics and crystal structure of a mutant Escherichia coli alkaline phosphatase (Asp-369-->Asn): a mechanism involving one zinc per active site. Tibbitts TT; Xu X; Kantrowitz ER Protein Sci; 1994 Nov; 3(11):2005-14. PubMed ID: 7703848 [TBL] [Abstract][Full Text] [Related]
8. Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase. Wang J; Stieglitz KA; Kantrowitz ER Biochemistry; 2005 Jun; 44(23):8378-86. PubMed ID: 15938627 [TBL] [Abstract][Full Text] [Related]
9. Kinetic and structural consequences of replacing the aspartate bridge by asparagine in the catalytic metal triad of Escherichia coli alkaline phosphatase. Tibbitts TT; Murphy JE; Kantrowitz ER J Mol Biol; 1996 Apr; 257(3):700-15. PubMed ID: 8648634 [TBL] [Abstract][Full Text] [Related]
10. Mutations at positions 153 and 328 in Escherichia coli alkaline phosphatase provide insight towards the structure and function of mammalian and yeast alkaline phosphatases. Murphy JE; Tibbitts TT; Kantrowitz ER J Mol Biol; 1995 Nov; 253(4):604-17. PubMed ID: 7473737 [TBL] [Abstract][Full Text] [Related]
11. Conversion of a magnesium binding site into a zinc binding site by a single amino acid substitution in Escherichia coli alkaline phosphatase. Murphy JE; Xu X; Kantrowitz ER J Biol Chem; 1993 Oct; 268(29):21497-500. PubMed ID: 8407998 [TBL] [Abstract][Full Text] [Related]
12. The importance of aspartate 327 for catalysis and zinc binding in Escherichia coli alkaline phosphatase. Xu X; Kantrowitz ER J Biol Chem; 1992 Aug; 267(23):16244-51. PubMed ID: 1644810 [TBL] [Abstract][Full Text] [Related]
13. A revised mechanism for the alkaline phosphatase reaction involving three metal ions. Stec B; Holtz KM; Kantrowitz ER J Mol Biol; 2000 Jun; 299(5):1303-11. PubMed ID: 10873454 [TBL] [Abstract][Full Text] [Related]
14. A water-mediated salt link in the catalytic site of Escherichia coli alkaline phosphatase may influence activity. Xu X; Kantrowitz ER Biochemistry; 1991 Aug; 30(31):7789-96. PubMed ID: 1907846 [TBL] [Abstract][Full Text] [Related]
15. Site-directed mutagenesis of histidine-90 in Escherichia coli L-threonine dehydrogenase alters its substrate specificity. Johnson AR; Dekker EE Arch Biochem Biophys; 1998 Mar; 351(1):8-16. PubMed ID: 9500838 [TBL] [Abstract][Full Text] [Related]
16. Glutamic acid residues as metal ligands in the active site of Escherichia coli alkaline phosphatase. Wojciechowski CL; Kantrowitz ER Biochim Biophys Acta; 2003 Jun; 1649(1):68-73. PubMed ID: 12818192 [TBL] [Abstract][Full Text] [Related]
17. Characterization of heterodimeric alkaline phosphatases from Escherichia coli: an investigation of intragenic complementation. Hehir MJ; Murphy JE; Kantrowitz ER J Mol Biol; 2000 Dec; 304(4):645-56. PubMed ID: 11099386 [TBL] [Abstract][Full Text] [Related]
18. 3-D structure of the D153G mutant of Escherichia coli alkaline phosphatase: an enzyme with weaker magnesium binding and increased catalytic activity. Dealwis CG; Chen L; Brennan C; Mandecki W; Abad-Zapatero C Protein Eng; 1995 Sep; 8(9):865-71. PubMed ID: 8746724 [TBL] [Abstract][Full Text] [Related]
19. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38. Johnson AR; Chen YW; Dekker EE Arch Biochem Biophys; 1998 Oct; 358(2):211-21. PubMed ID: 9784233 [TBL] [Abstract][Full Text] [Related]
20. Significance of metal ions in galactose-1-phosphate uridylyltransferase: an essential structural zinc and a nonessential structural iron. Geeganage S; Frey PA Biochemistry; 1999 Oct; 38(40):13398-406. PubMed ID: 10529216 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]