These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8520477)

  • 1. The optimization of protein-solvent interactions: thermostability and the role of hydrophobic and electrostatic interactions.
    Spassov VZ; Karshikoff AD; Ladenstein R
    Protein Sci; 1995 Aug; 4(8):1516-27. PubMed ID: 8520477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of the electrostatic interactions in proteins of different functional and folding type.
    Spassov VZ; Karshikoff AD; Ladenstein R
    Protein Sci; 1994 Sep; 3(9):1556-69. PubMed ID: 7833815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inter-residue and solvent-residue interactions in proteins: a statistical study on experimental structures.
    Chelli R; Gervasio FL; Procacci P; Schettino V
    Proteins; 2004 Apr; 55(1):139-51. PubMed ID: 14997548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The natively unfolded character of tau and its aggregation to Alzheimer-like paired helical filaments.
    Jeganathan S; von Bergen M; Mandelkow EM; Mandelkow E
    Biochemistry; 2008 Oct; 47(40):10526-39. PubMed ID: 18783251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution X-ray structure of the DNA-binding protein HU from the hyper-thermophilic Thermotoga maritima and the determinants of its thermostability.
    Christodoulou E; Rypniewski WR; Vorgias CR
    Extremophiles; 2003 Apr; 7(2):111-22. PubMed ID: 12664263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the charge-charge interactions in defining stability and halophilicity of the CspB proteins.
    Gribenko AV; Makhatadze GI
    J Mol Biol; 2007 Feb; 366(3):842-56. PubMed ID: 17188709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein stability and surface electrostatics: a charged relationship.
    Strickler SS; Gribenko AV; Gribenko AV; Keiffer TR; Tomlinson J; Reihle T; Loladze VV; Makhatadze GI
    Biochemistry; 2006 Mar; 45(9):2761-6. PubMed ID: 16503630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic interactions contribute to reduced heat capacity change of unfolding in a thermophilic ribosomal protein l30e.
    Lee CF; Allen MD; Bycroft M; Wong KB
    J Mol Biol; 2005 Apr; 348(2):419-31. PubMed ID: 15811378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the amino acid sequence in domain swapping of the B1 domain of protein G.
    Sirota FL; Héry-Huynh S; Maurer-Stroh S; Wodak SJ
    Proteins; 2008 Jul; 72(1):88-104. PubMed ID: 18186476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free energy landscape of protein folding in water: explicit vs. implicit solvent.
    Zhou R
    Proteins; 2003 Nov; 53(2):148-61. PubMed ID: 14517967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An electrostatic basis for the stability of thermophilic proteins.
    Dominy BN; Minoux H; Brooks CL
    Proteins; 2004 Oct; 57(1):128-41. PubMed ID: 15326599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origins of protein denatured state compactness and hydrophobic clustering in aqueous urea: inferences from nonpolar potentials of mean force.
    Shimizu S; Chan HS
    Proteins; 2002 Dec; 49(4):560-6. PubMed ID: 12402364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial optimization of electrostatic interactions between the ionized groups in globular proteins.
    Spassov VZ; Atanasov BP
    Proteins; 1994 Jul; 19(3):222-9. PubMed ID: 7937735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-cooperativity and cooperativity in hydrophobic interactions: Three-body free energy landscapes and comparison with implicit-solvent potential functions for proteins.
    Shimizu S; Chan HS
    Proteins; 2002 Jul; 48(1):15-30. PubMed ID: 12012334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of accessible surface of residues in proteins.
    Lins L; Thomas A; Brasseur R
    Protein Sci; 2003 Jul; 12(7):1406-17. PubMed ID: 12824487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of increasing the stability of non-native interactions on the folding landscape of the bacterial immunity protein Im9.
    Morton VL; Friel CT; Allen LR; Paci E; Radford SE
    J Mol Biol; 2007 Aug; 371(2):554-68. PubMed ID: 17574573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of main-chain electrostatics, hydrophobic effect and side-chain conformational entropy in determining the secondary structure of proteins.
    Avbelj F; Fele L
    J Mol Biol; 1998 Jun; 279(3):665-84. PubMed ID: 9641985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A molecular dynamics study of the correlations between solvent-accessible surface, molecular volume, and folding state.
    Floriano WB; Domont GB; Nascimento MA
    J Phys Chem B; 2007 Feb; 111(7):1893-9. PubMed ID: 17261064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrinsically disordered protein from a pathogenic mesophile Mycobacterium tuberculosis adopts structured conformation at high temperature.
    Kumar N; Shukla S; Kumar S; Suryawanshi A; Chaudhry U; Ramachandran S; Maiti S
    Proteins; 2008 May; 71(3):1123-33. PubMed ID: 18004752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.