BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 8520668)

  • 1. Microcalorimetric characterization of the anion-exchange adsorption of recombinant cytochrome b5 and its surface-charge mutants.
    Gill DS; Roush DJ; Shick KA; Willson RC
    J Chromatogr A; 1995 Oct; 715(1):81-93. PubMed ID: 8520668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Presence of a preferred anion-exchange binding site on cytochrome b5: structural and thermodynamic considerations.
    Gill DS; Roush DJ; Willson RC
    J Chromatogr A; 1994 Oct; 684(1):55-63. PubMed ID: 7987477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anion-exchange chromatographic behavior of recombinant rat cytochrome b5. Thermodynamic driving forces and temperature dependence of the stoichiometric displacement parameter Z.
    Roush DJ; Gill DS; Willson RC
    J Chromatogr A; 1993 Nov; 653(2):207-18. PubMed ID: 8269055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microcalorimetric study of adsorption of glycomacropeptide on anion-exchange chromatography adsorbent.
    Lira RA; Minim LA; Bonomo RC; Minim VP; da Silva LH; da Silva MC
    J Chromatogr A; 2009 May; 1216(20):4440-4. PubMed ID: 19342056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competitive ion-exchange adsorption of proteins: competitive isotherms with controlled competitor concentration.
    Cano T; Offringa ND; Willson RC
    J Chromatogr A; 2005 Jun; 1079(1-2):116-26. PubMed ID: 16038297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microcalorimetric study of the adsorption of native and mono-PEGylated bovine serum albumin on anion-exchangers.
    Blaschke T; Werner A; Hasse H
    J Chromatogr A; 2013 Feb; 1277():58-68. PubMed ID: 23332740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic potentials and electrostatic interaction energies of rat cytochrome b5 and a simulated anion-exchange adsorbent surface.
    Roush DJ; Gill DS; Willson RC
    Biophys J; 1994 May; 66(5):1290-300. PubMed ID: 8061185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disagreements Between Calorimetric and Van't Hoff Enthalpies of Adsorption II: Effect of pH and pH Buffers on Phenobarbital Adsorption to Activated Carbon.
    Assaf Z; Wurster DE
    J Pharm Sci; 2023 Jan; 112(1):100-107. PubMed ID: 36372228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microcalorimetric study of adsorption and disassembling of virus-like particles on anion exchange chromatography media.
    Yu M; Zhang S; Zhang Y; Yang Y; Ma G; Su Z
    J Chromatogr A; 2015 Apr; 1388():195-206. PubMed ID: 25744549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic characterization of the interaction between cytochrome b5 and cytochrome c.
    McLean MA; Sligar SG
    Biochem Biophys Res Commun; 1995 Oct; 215(1):316-20. PubMed ID: 7575608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disagreements Between Calorimetric and Van't Hoff Enthalpies of Adsorption: A New Langmuir-like Model to Account for the Effect of Solvent Displacement Stoichiometry.
    Assaf Z; Wurster DE
    J Pharm Sci; 2023 Jan; 112(1):91-99. PubMed ID: 35605689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microcalorimetric study of adsorption of human monoclonal antibodies on cation exchange chromatographic materials.
    Dieterle M; Blaschke T; Hasse H
    J Chromatogr A; 2008 Sep; 1205(1-2):1-9. PubMed ID: 18718598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microcalorimetric Analysis of the Adsorption of Lysozyme and Cytochrome c onto Cation-Exchange Chromatography Resins: Influence of Temperature on Retention.
    Simoes-Cardoso JC; Kojo H; Yoshimoto N; Yamamoto S
    Langmuir; 2020 Apr; 36(13):3336-3345. PubMed ID: 32160753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accounting for apparent deviations between calorimetric and van't Hoff enthalpies.
    Kantonen SA; Henriksen NM; Gilson MK
    Biochim Biophys Acta Gen Subj; 2018 Mar; 1862(3):692-704. PubMed ID: 29221984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature dependence of adsorption of PEGylated lysozyme and pure polyethylene glycol on a hydrophobic resin: comparison of isothermal titration calorimetry and van't Hoff data.
    Werner A; Hackemann E; Hasse H
    J Chromatogr A; 2014 Aug; 1356():188-96. PubMed ID: 25016322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Van't Hoff and calorimetric enthalpies from isothermal titration calorimetry: are there significant discrepancies?
    Horn JR; Russell D; Lewis EA; Murphy KP
    Biochemistry; 2001 Feb; 40(6):1774-8. PubMed ID: 11327839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microcalorimetric study of the adsorption of PEGylated lysozyme on a strong cation exchange resin.
    Blaschke T; Varon J; Werner A; Hasse H
    J Chromatogr A; 2011 Jul; 1218(29):4720-6. PubMed ID: 21689820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow microcalorimetric measurements for bovine serum albumin on reversed-phase and anion-exchange supports under overloaded conditions.
    Thrash ME; Pinto NG
    J Chromatogr A; 2001 Jan; 908(1-2):293-9. PubMed ID: 11218131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Significant discrepancies between van't Hoff and calorimetric enthalpies. II.
    Liu Y; Sturtevant JM
    Protein Sci; 1995 Dec; 4(12):2559-61. PubMed ID: 8580846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic analysis of polyphenols retention in polymer resin chromatography by van't Hoff plot and isothermal titration calorimetry.
    Simoes-Cardoso JC; Yoshimoto N; Yamamoto S
    J Chromatogr A; 2019 Dec; 1608():460405. PubMed ID: 31378530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.