BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 8520689)

  • 1. Gas chromatographic analysis of fatty acid methyl esters.
    Eder K
    J Chromatogr B Biomed Appl; 1995 Sep; 671(1-2):113-31. PubMed ID: 8520689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gibbs energy additivity approaches to QSRR in generating gas chromatographic retention time for identification of fatty acid methyl ester.
    Pojjanapornpun S; Aryusuk K; Lilitchan S; Krisnangkura K
    Anal Bioanal Chem; 2017 Apr; 409(11):2777-2789. PubMed ID: 28168549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gas chromatographic separation of fatty acid methyl esters on weakly polar capillary columns.
    Yamamoto K; Kinoshita A; Shibahara A
    J Chromatogr A; 2008 Feb; 1182(1):132-5. PubMed ID: 18207151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of GC stationary phases for the separation of fatty acid methyl esters in biodiesel fuels.
    Goding JC; Ragon DY; O'Connor JB; Boehm SJ; Hupp AM
    Anal Bioanal Chem; 2013 Jul; 405(18):6087-94. PubMed ID: 23728727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical method for the prediction of retention times of fatty acid methyl esters in temperature-programmed capillary gas chromatography.
    Torres AG; Trugo NM; Trugo LC
    J Agric Food Chem; 2002 Jul; 50(15):4156-63. PubMed ID: 12105939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic liquid phases with comprehensive two-dimensional gas chromatography of fatty acid methyl esters.
    Pojjanapornpun S; Nolvachai Y; Aryusuk K; Kulsing C; Krisnangkura K; Marriott PJ
    Anal Bioanal Chem; 2018 Jul; 410(19):4669-4677. PubMed ID: 29455287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variation of anionic moieties of dicationic ionic liquid GC stationary phases: Effect on stability and selectivity.
    Talebi M; Patil RA; Sidisky LM; Berthod A; Armstrong DW
    Anal Chim Acta; 2018 Dec; 1042():155-164. PubMed ID: 30428982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An empirical approach for estimating the equivalent chain length of fatty acid methyl esters in multistep temperature-programmed gas chromatography.
    Lomsugarit S; Katsuwon J; Jeyashoke N; Krisnangkura K
    J Chromatogr Sci; 2001 Nov; 39(11):468-72. PubMed ID: 11718307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of lipids in infant formula powder by direct extraction methylation of lipids and fatty acid methyl esters (FAME) analysis by gas chromatography.
    Cantellops D; Reid AP; Eitenmiller RR; Long AR
    J AOAC Int; 1999; 82(5):1128-39. PubMed ID: 10513013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conventional and fast gas chromatography analysis of biodiesel blends using an ionic liquid stationary phase.
    Ragonese C; Tranchida PQ; Sciarrone D; Mondello L
    J Chromatogr A; 2009 Dec; 1216(51):8992-7. PubMed ID: 19913232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gas chromatography of fatty acids.
    Shantha NC; Napolitano GE
    J Chromatogr; 1992 Oct; 624(1-2):37-51. PubMed ID: 1494015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatty acid composition of human erythrocyte membranes by capillary gas chromatography-mass spectrometry.
    Alexander LR; Justice JB; Madden J
    J Chromatogr; 1985 Jul; 342(1):1-12. PubMed ID: 4044739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation of Fatty Acid Dimethyl Esters on an Ionic Liquid Gas Chromatographic Column.
    Pauls RE; Pease B
    J Chromatogr Sci; 2021 Feb; 59(3):205-211. PubMed ID: 33275654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental designs for modeling retention patterns and separation efficiency in analysis of fatty acid methyl esters by gas chromatography-mass spectrometry.
    Skartland LK; Mjøs SA; Grung B
    J Chromatogr A; 2011 Sep; 1218(38):6823-31. PubMed ID: 21851946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An alternative approach for the estimation of equivalent temperature in gas chromatography.
    Aryusuk K; Yensruang D; Krisnangkura K
    J Chromatogr Sci; 2004 Aug; 42(7):371-7. PubMed ID: 15355577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A gas chromatography full scan high resolution Orbitrap mass spectrometry method for separation and characterization of 3-hydroxymethyl pyridine ester of fatty acids at low levels.
    Merlier F; Imatoukene N; Octave S; Nicaud JM; Thomasset B
    J Chromatogr A; 2018 Nov; 1575():72-79. PubMed ID: 30217382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation of the fatty acids in menhaden oil as methyl esters with a highly polar ionic liquid gas chromatographic column and identification by time of flight mass spectrometry.
    Fardin-Kia AR; Delmonte P; Kramer JK; Jahreis G; Kuhnt K; Santercole V; Rader JI
    Lipids; 2013 Dec; 48(12):1279-95. PubMed ID: 24043585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An improved method for determining medium- and long-chain FAMEs using gas chromatography.
    Xu Z; Harvey K; Pavlina T; Dutot G; Zaloga G; Siddiqui R
    Lipids; 2010 Feb; 45(2):199-208. PubMed ID: 20082149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Creating a fatty acid methyl ester database for lipid profiling in a single drop of human blood using high resolution capillary gas chromatography and mass spectrometry.
    Bicalho B; David F; Rumplel K; Kindt E; Sandra P
    J Chromatogr A; 2008 Nov; 1211(1-2):120-8. PubMed ID: 18842268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the composition of fatty acid mixtures using GC x FI-MS: a comprehensive two-dimensional separation approach.
    Hejazi L; Ebrahimi D; Guilhaus M; Hibbert DB
    Anal Chem; 2009 Feb; 81(4):1450-8. PubMed ID: 19146461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.