These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 852102)

  • 1. Properties of mixed vesicles of lecithin: cholesterol up to a 1:2 molar ratio.
    Lundberg B
    Chem Phys Lipids; 1977 Mar; 18(2):212-20. PubMed ID: 852102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acyl chain unsaturation modulates distribution of lecithin molecular species between mixed micelles and vesicles in model bile. Implications for particle structure and metastable cholesterol solubilities.
    Cohen DE; Carey MC
    J Lipid Res; 1991 Aug; 32(8):1291-302. PubMed ID: 1770311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single bilayer vesicles prepared without sonication. Physico-chemical properties.
    Brunner J; Skrabal P; Hauser H
    Biochim Biophys Acta; 1976 Dec; 455(2):322-31. PubMed ID: 1033769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of short-chain lecithin with long-chain phospholipids: characterization of vesicles that form spontaneously.
    Gabriel NE; Roberts MF
    Biochemistry; 1986 May; 25(10):2812-21. PubMed ID: 3718923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of 1H-NMR to determine the distribution of lecithin between the micellar and vesicular phases in model bile.
    Groen AK; Goldhoorn BG; Egbers PH; Chamuleau RA; Tytgat GN; Bovée WM
    J Lipid Res; 1990 Jul; 31(7):1315-21. PubMed ID: 2401862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholesterol solubilization by short-chain lecithins: characterization of mixed micelles and cholesterol oxidase activity.
    Burns RA; Roberts MF
    Biochemistry; 1981 Dec; 20(25):7102-8. PubMed ID: 6947824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution proton and carbon-13 NMR of membranes: why sonicate?
    Oldfield E; Bowers JL; Forbes J
    Biochemistry; 1987 Nov; 26(22):6919-23. PubMed ID: 3427053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural studies on phophatidylcholine-cholesterol mixed vesicles.
    Newman GC; Huang C
    Biochemistry; 1975 Jul; 14(15):3363-70. PubMed ID: 1170890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton magnetic resonance study of cholesterol transfer between egg yolk lecithin vesicles.
    Haran N; Shporer M
    Biochim Biophys Acta; 1977 Feb; 465(1):11-8. PubMed ID: 556952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of cholesterol and lanosterol on artificial membranes.
    Yeagle PL; Martin RB; Lala AK; Lin HK; Bloch K
    Proc Natl Acad Sci U S A; 1977 Nov; 74(11):4924-6. PubMed ID: 270726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural dimorphism of bile salt/lecithin mixed micelles. A possible regulatory mechanism for cholesterol solubility in bile? X-ray structure analysis.
    Müller K
    Biochemistry; 1981 Jan; 20(2):404-14. PubMed ID: 7470489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular motion and order in single-bilayer vesicles and multilamellar dispersions of egg lecithin and lecithin-cholesterol mixtures. A deuterium nuclear magnetic resonance study of specifically labeled lipids.
    Stockton GW; Polnaszek CF; Tulloch AP; Hasan F; Smith IC
    Biochemistry; 1976 Mar; 15(5):954-66. PubMed ID: 943179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR studies on phospholipid bilayers. Some factors affecting lipid distribution.
    Berden JA; Barker RW; Radda GK
    Biochim Biophys Acta; 1975 Jan; 375(2):186-208. PubMed ID: 235977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization and interactions of melatonin in dry cholesterol/lecithin mixed reversed micelles used as cell membrane models.
    Bongiorno D; Ceraulo L; Ferrugia M; Filizzola F; Ruggirello A; Liveri VT
    J Pineal Res; 2005 May; 38(4):292-8. PubMed ID: 15813907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined interaction of phospholipase C and apolipoprotein A-I with small unilamellar lecithin-cholesterol vesicles: influence of apolipoprotein A-I concentration and vesicle composition.
    Gudheti MV; Lee SP; Danino D; Wrenn SP
    Biochemistry; 2005 May; 44(19):7294-304. PubMed ID: 15882068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of an amine oxide detergent with lecithin vesicles as studied by nuclear magnetic resonance.
    Beyer K; Klingenberg M
    Biochemistry; 1978 Apr; 17(8):1424-31. PubMed ID: 646992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural mechanisms of bile salt-induced growth of small unilamellar cholesterol-lecithin vesicles.
    Luk AS; Kaler EW; Lee SP
    Biochemistry; 1997 May; 36(19):5633-44. PubMed ID: 9153403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quasi-elastic light-scattering studies of aqueous biliary lipid systems. Cholesterol solubilization and precipitation in model bile solutions.
    Mazer NA; Carey MC
    Biochemistry; 1983 Jan; 22(2):426-42. PubMed ID: 6824637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence quenching in lecithin and lecithin/cholesterol liposomes by parmagenetic lipid analogues. Introduction of a new probe approach.
    Bieri VG; Wallach DF
    Biochim Biophys Acta; 1975 May; 389(3):413-27. PubMed ID: 164944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential interaction of cholesterol with phosphatidylcholine on the inner and outer surfaces of lipid bilayer vesicles.
    Huang CH; Sipe JP; Chow ST; Martin RB
    Proc Natl Acad Sci U S A; 1974 Feb; 71(2):359-62. PubMed ID: 4521808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.