These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 8521045)

  • 1. WIMOVAC: a software package for modelling the dynamics of plant leaf and canopy photosynthesis.
    Humphries SW; Long SP
    Comput Appl Biosci; 1995 Aug; 11(4):361-71. PubMed ID: 8521045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A user-friendly means to scale from the biochemistry of photosynthesis to whole crop canopies and production in time and space - development of Java WIMOVAC.
    Song Q; Chen D; Long SP; Zhu XG
    Plant Cell Environ; 2017 Jan; 40(1):51-55. PubMed ID: 27529651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A test of the optimality approach to modelling canopy properties and CO2 uptake by natural vegetation.
    Schymanski SJ; Roderick ML; Sivapalan M; Hutley LB; Beringer J
    Plant Cell Environ; 2007 Dec; 30(12):1586-98. PubMed ID: 17927696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonality of temperate forest photosynthesis and daytime respiration.
    Wehr R; Munger JW; McManus JB; Nelson DD; Zahniser MS; Davidson EA; Wofsy SC; Saleska SR
    Nature; 2016 Jun; 534(7609):680-3. PubMed ID: 27357794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling environmental controls on ecosystem photosynthesis and the carbon isotope composition of ecosystem-respired CO2 in a coastal Douglas-fir forest.
    Cai T; Flanagan LB; Jassal RS; Black TA
    Plant Cell Environ; 2008 Apr; 31(4):435-53. PubMed ID: 18182019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling coupled interactions of carbon, water, and ozone exchange between terrestrial ecosystems and the atmosphere. I: model description.
    Nikolov N; Zeller KF
    Environ Pollut; 2003; 124(2):231-46. PubMed ID: 12713923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2.
    Smith NG; Dukes JS
    Glob Chang Biol; 2013 Jan; 19(1):45-63. PubMed ID: 23504720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling plant responses to elevated CO2: how important is leaf area index?
    Ewert F
    Ann Bot; 2004 Jun; 93(6):619-27. PubMed ID: 15102613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response of net ecosystem gas exchange to a simulated precipitation pulse in a semi-arid grassland: the role of native versus non-native grasses and soil texture.
    Huxman TE; Cable JM; Ignace DD; Eilts JA; English NB; Weltzin J; Williams DG
    Oecologia; 2004 Oct; 141(2):295-305. PubMed ID: 14557868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of crop gas exchange and transpiration data obtained with CEEF to global change problem.
    Tako Y; Arai R; Otsubo K; Nitta K
    Adv Space Res; 2001; 27(9):1541-5. PubMed ID: 11695434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simulation of the importance of length of growing season and canopy functional properties on the seasonal gross primary production of temperate alpine meadows.
    Baptist F; Choler P
    Ann Bot; 2008 Mar; 101(4):549-59. PubMed ID: 18182383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling C₃ photosynthesis from the chloroplast to the ecosystem.
    Bernacchi CJ; Bagley JE; Serbin SP; Ruiz-Vera UM; Rosenthal DM; Vanloocke A
    Plant Cell Environ; 2013 Sep; 36(9):1641-57. PubMed ID: 23590343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Terrestrial plant production and climate change.
    Friend AD
    J Exp Bot; 2010 Mar; 61(5):1293-309. PubMed ID: 20202998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling canopy photosynthesis in response to environmental conditions.
    Johnson IR
    Adv Space Res; 1996; 18(1-2):163-6. PubMed ID: 11538957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems.
    Huxman TE; Snyder KA; Tissue D; Leffler AJ; Ogle K; Pockman WT; Sandquist DR; Potts DL; Schwinning S
    Oecologia; 2004 Oct; 141(2):254-68. PubMed ID: 15338414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elevated CO
    Zheng Y; Li F; Hao L; Yu J; Guo L; Zhou H; Ma C; Zhang X; Xu M
    BMC Plant Biol; 2019 Jun; 19(1):255. PubMed ID: 31195963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulating the growth response of aspen to elevated ozone: a mechanistic approach to scaling a leaf-level model of ozone effects on photosynthesis to a complex canopy architecture.
    Martin MJ; Host GE; Lenz KE; Isebrands JG
    Environ Pollut; 2001; 115(3):425-36. PubMed ID: 11789923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amazonia and the modern carbon cycle: lessons learned.
    Ometto JP; Nobre AD; Rocha HR; Artaxo P; Martinelli LA
    Oecologia; 2005 May; 143(4):483-500. PubMed ID: 15800745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ECOSIMP2 model: prediction of CO2 concentration changes and carbon status in closed ecosystems.
    Andre M; Thiery J; Cournac L
    Adv Space Res; 1994 Nov; 14(11):323-6. PubMed ID: 11540200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaf-level gas-exchange uniformity and photosynthetic capacity among loblolly pine (Pinus taeda L.) genotypes of contrasting inherent genetic variation.
    Aspinwall MJ; King JS; McKeand SE; Domec JC
    Tree Physiol; 2011 Jan; 31(1):78-91. PubMed ID: 21389004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.