These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 8521048)

  • 1. Chromosome aberrations produced by ionizing radiation: Monte Carlo simulations and chromosome painting data.
    Chen AM; Lucas JN; Hill FS; Brenner DJ; Sachs RK
    Comput Appl Biosci; 1995 Aug; 11(4):389-97. PubMed ID: 8521048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proximity effects for chromosome aberrations measured by FISH.
    Chen AM; Lucas JN; Hill FS; Brenner DJ; Sachs RK
    Int J Radiat Biol; 1996 Apr; 69(4):411-20. PubMed ID: 8627123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer simulation of data on chromosome aberrations produced by X rays or alpha particles and detected by fluorescence in situ hybridization.
    Chen AM; Lucas JN; Simpson PJ; Griffin CS; Savage JR; Brenner DJ; Hlatky LR; Sachs RK
    Radiat Res; 1997 Nov; 148(5 Suppl):S93-101. PubMed ID: 9355862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Random breakage and reunion chromosome aberration formation model; an interaction-distance version based on chromatin geometry.
    Sachs RK; Levy D; Chen AM; Simpson PJ; Cornforth MN; Ingerman EA; Hahnfeldt P; Hlatky LR
    Int J Radiat Biol; 2000 Dec; 76(12):1579-88. PubMed ID: 11133039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using three-color chromosome painting to test chromosome aberration models.
    Lucas JN; Sachs RK
    Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1484-7. PubMed ID: 8434009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of chromosome painting. II. A detailed analysis of aberrations following high doses of ionizing radiation in vitro.
    Tucker JD; Lee DA; Moore DH
    Int J Radiat Biol; 1995 Jan; 67(1):19-28. PubMed ID: 7531743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Underprediction of visibly complex chromosome aberrations by a recombinational-repair ('one-hit') model.
    Sachs RK; Rogoff A; Chen AM; Simpson PJ; Savage JR; Hahnfeldt P; Hlatky LR
    Int J Radiat Biol; 2000 Feb; 76(2):129-48. PubMed ID: 10716635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Track structure, chromosome geometry and chromosome aberrations.
    Brenner DJ; Ward JF; Sachs RK
    Basic Life Sci; 1994; 63():93-109; discussion 109-13. PubMed ID: 7755549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of radiation-induced chromosome aberrations.
    Sachs RK; Levy D; Hahnfeldt P; Hlatky L
    Cytogenet Genome Res; 2004; 104(1-4):142-8. PubMed ID: 15162028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical predictions on the equality of radiation-produced dicentrics and translocations detected by chromosome painting.
    Lucas JN; Chen AM; Sachs RK
    Int J Radiat Biol; 1996 Feb; 69(2):145-53. PubMed ID: 8609450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proximity effects in chromosome aberration induction: Dependence on radiation quality, cell type and dose.
    Tello Cajiao JJ; Carante MP; Bernal Rodriguez MA; Ballarini F
    DNA Repair (Amst); 2018 Apr; 64():45-52. PubMed ID: 29494834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromosome aberrations induced by light ions: Monte Carlo simulations based on a mechanistic model.
    Ballarini F; Merzagora M; Monforti F; Durante M; Gialanella G; Grossi GF; Pugliese M; Ottolenghi A
    Int J Radiat Biol; 1999 Jan; 75(1):35-46. PubMed ID: 9972789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of radiation quality on the spectrum of induced chromosome exchange aberrations.
    Boei JJ; Vermeulen S; Mullenders LH; Natarajan AT
    Int J Radiat Biol; 2001 Aug; 77(8):847-57. PubMed ID: 11571018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of DMSO on radiation-induced chromosome aberrations analysed by FISH.
    Cigarrán S; Barrios L; Caballín MR; Barquinero JF
    Cytogenet Genome Res; 2004; 104(1-4):168-72. PubMed ID: 15162032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model of chromosome aberration induction: applications to space research.
    Ballarini F; Ottolenghi A
    Radiat Res; 2005 Oct; 164(4 Pt 2):567-70. PubMed ID: 16187789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational model of chromosome aberration yield induced by high- and low-LET radiation exposures.
    Ponomarev AL; George K; Cucinotta FA
    Radiat Res; 2012 Jun; 177(6):727-37. PubMed ID: 22490019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clustering of radiation-produced breaks along chromosomes: modelling the effects on chromosome aberrations.
    Sachs RK; Chen AM; Simpson PJ; Hlatky LR; Hahnfeldt P; Savage JR
    Int J Radiat Biol; 1999 Jun; 75(6):657-72. PubMed ID: 10404995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proximity effects in chromosome aberration induction by low-LET ionizing radiation.
    Tello Cajiao JJ; Carante MP; Bernal Rodriguez MA; Ballarini F
    DNA Repair (Amst); 2017 Oct; 58():38-46. PubMed ID: 28863396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer analysis of mFISH chromosome aberration data uncovers an excess of very complicated metaphases.
    Vazquez M; Greulich-Bode KM; Arsuaga J; Cornforth MN; Brückner M; Sachs RK; Hlatky L; Molls M; Hahnfeldt P
    Int J Radiat Biol; 2002 Dec; 78(12):1103-15. PubMed ID: 12556338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Models of chromosome aberration induction: an example based on radiation track structure.
    Ballarini F; Ottolenghi A
    Cytogenet Genome Res; 2004; 104(1-4):149-56. PubMed ID: 15162029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.