These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8521048)

  • 41. FISH-based analysis of radiation-induced chromosomal aberrations using different nomenclature systems.
    Knehr S; Zitzelsberger H; Bauchinger M
    Int J Radiat Biol; 1998 Feb; 73(2):135-41. PubMed ID: 9489559
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparing DNA damage-processing pathways by computer analysis of chromosome painting data.
    Levy D; Vazquez M; Cornforth M; Loucas B; Sachs RK; Arsuaga J
    J Comput Biol; 2004; 11(4):626-41. PubMed ID: 15579235
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Intrachromosomal exchange aberrations predicted on the basis of the globular interphase chromosome model.
    Andreev SG; Eidelman Y
    Radiat Prot Dosimetry; 2002; 99(1-4):193-6. PubMed ID: 12194281
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Complex interchanges as a complex function of chromosome organisation.
    Eidelman YA; Andreev SG
    Radiat Prot Dosimetry; 2011 Feb; 143(2-4):202-6. PubMed ID: 21109545
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Full-color painting reveals an excess of radiation-induced dicentrics involving homologous chromosomes.
    Plan Y; Hlatky L; Hahnfeldt P; Sachs R; Loucas B; Cornforth M
    Int J Radiat Biol; 2005 Aug; 81(8):613-20. PubMed ID: 16298942
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Relative proximity of chromosome territories influences chromosome exchange partners in radiation-induced chromosome rearrangements in primary human bronchial epithelial cells.
    Foster HA; Estrada-Girona G; Themis M; Garimberti E; Hill MA; Bridger JM; Anderson RM
    Mutat Res; 2013 Aug; 756(1-2):66-77. PubMed ID: 23791770
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chromosome aberrations as biomarkers of radiation exposure: modelling basic mechanisms.
    Ballarini F; Ottolenghi A
    Adv Space Res; 2003; 31(6):1557-68. PubMed ID: 12971411
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of chromosome size on aberration levels caused by gamma radiation as detected by fluorescence in situ hybridization.
    Pandita TK; Gregoire V; Dhingra K; Hittelman WN
    Cytogenet Cell Genet; 1994; 67(2):94-101. PubMed ID: 8039428
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chromosome spatial clustering inferred from radiogenic aberrations.
    Arsuaga J; Greulich-Bode KM; Vazquez M; Bruckner M; Hahnfeldt P; Brenner DJ; Sachs R; Hlatky L
    Int J Radiat Biol; 2004 Jul; 80(7):507-15. PubMed ID: 15360089
    [TBL] [Abstract][Full Text] [Related]  

  • 50. UV-A breakage sensitivity of human chromosomes as measured by COMET-FISH depends on gene density and not on the chromosome size.
    Rapp A; Bock C; Dittmar H; Greulich KO
    J Photochem Photobiol B; 2000 Jul; 56(2-3):109-17. PubMed ID: 11079471
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Detection of Inter-chromosomal Stable Aberrations by Multiple Fluorescence In Situ Hybridization (mFISH) and Spectral Karyotyping (SKY) in Irradiated Mice.
    Pathak R; Koturbash I; Hauer-Jensen M
    J Vis Exp; 2017 Jan; (119):. PubMed ID: 28117817
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Radiation-produced chromosome aberrations: colourful clues.
    Sachs RK; Hlatky LR; Trask BJ
    Trends Genet; 2000 Apr; 16(4):143-6. PubMed ID: 10729825
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Increased complexity of radiation-induced chromosome aberrations consistent with a mechanism of sequential formation.
    Anderson RM; Papworth DG; Stevens DL; Sumption ND; Goodhead DT
    Cytogenet Genome Res; 2006; 112(1-2):35-44. PubMed ID: 16276088
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Use of a three-color chromosome in situ suppression technique for the detection of past radiation exposure.
    Gebhart E; Neubauer S; Schmitt G; Birkenhake S; Dunst J
    Radiat Res; 1996 Jan; 145(1):47-52. PubMed ID: 8532836
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chromosome aberrations induced by high-LET carbon ions in radiosensitive and radioresistant tumour cells.
    Virsik-Köpp P; Hofman-Huether H
    Cytogenet Genome Res; 2004; 104(1-4):221-6. PubMed ID: 15162042
    [TBL] [Abstract][Full Text] [Related]  

  • 56. DNA damage in leukocytes from Fanconi anemia (FA) patients and heterozygotes induced by mitomycin C and ionizing radiation as assessed by the comet and comet-FISH assay.
    Mohseni Meybodi A; Mozdarani H
    Iran Biomed J; 2009 Jan; 13(1):1-8. PubMed ID: 19252672
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Rejoining pathways underlying intrachange formation depend on interphase chromosome structure].
    Andreev SG; Eĭdel'man IuA
    Radiats Biol Radioecol; 2001; 41(5):469-74. PubMed ID: 11721341
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Monte Carlo/Markov chain model for the association of data for chromosome aberrations and formation of micronuclei.
    Hahnfeldt P; Hlatky LR
    Radiat Res; 1994 May; 138(2):239-45. PubMed ID: 8183993
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A model for interphase chromosomes and evaluation of radiation-induced aberrations.
    Holley WR; Mian IS; Park SJ; Rydberg B; Chatterjee A
    Radiat Res; 2002 Nov; 158(5):568-80. PubMed ID: 12385634
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Significant large-scale chromosome territory movement occurs as a result of mitosis, but not during interphase.
    Lucas JN; Cervantes E
    Int J Radiat Biol; 2002 Jun; 78(6):449-55. PubMed ID: 12065049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.