These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 8521050)

  • 1. Representing inter-residue dependencies in protein sequences with probabilistic networks.
    Mamitsuka H
    Comput Appl Biosci; 1995 Aug; 11(4):413-22. PubMed ID: 8521050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. alpha-Helix region prediction with stochastic rule learning.
    Mamitsuka H; Yamanishi K
    Comput Appl Biosci; 1995 Aug; 11(4):399-411. PubMed ID: 8521049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular modeling of single polypeptide chain of calcium-binding protein p26olf from dimeric S100B(betabeta).
    Tanaka T; Miwa N; Kawamura S; Sohma H; Nitta K; Matsushima N
    Protein Eng; 1999 May; 12(5):395-405. PubMed ID: 10360980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting solvent accessibility: higher accuracy using Bayesian statistics and optimized residue substitution classes.
    Thompson MJ; Goldstein RA
    Proteins; 1996 May; 25(1):38-47. PubMed ID: 8727318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of inter-residue contacts map based on genetic algorithm optimized radial basis function neural network and binary input encoding scheme.
    Zhang GZ; Huang DS
    J Comput Aided Mol Des; 2004 Dec; 18(12):797-810. PubMed ID: 16075311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using sequence motifs for enhanced neural network prediction of protein distance constraints.
    Gorodkin J; Lund O; Andersen CA; Brunak S
    Proc Int Conf Intell Syst Mol Biol; 1999; ():95-105. PubMed ID: 10786291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fast method to predict protein interaction sites from sequences.
    Gallet X; Charloteaux B; Thomas A; Brasseur R
    J Mol Biol; 2000 Sep; 302(4):917-26. PubMed ID: 10993732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence and structural features of carbohydrate binding in proteins and assessment of predictability using a neural network.
    Malik A; Ahmad S
    BMC Struct Biol; 2007 Jan; 7():1. PubMed ID: 17201922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Algorithms for protein structural motif recognition.
    Berger B
    J Comput Biol; 1995; 2(1):125-38. PubMed ID: 7497115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PSSM-based prediction of DNA binding sites in proteins.
    Ahmad S; Sarai A
    BMC Bioinformatics; 2005 Feb; 6():33. PubMed ID: 15720719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motif identification neural design for rapid and sensitive protein family search.
    Wu CH; Zhao S; Chen HL; Lo CJ; McLarty J
    Comput Appl Biosci; 1996 Apr; 12(2):109-18. PubMed ID: 8744773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inter-residue spatial distance map prediction by using integrating GA with RBFNN.
    Zhang GZ; Huang DS
    Protein Pept Lett; 2004 Dec; 11(6):571-6. PubMed ID: 15579127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence motifs determine structure and Ca++-binding by EF-hand proteins.
    Rashidi HH; Bauer M; Patterson J; Smith DW
    J Mol Microbiol Biotechnol; 1999 Aug; 1(1):175-82. PubMed ID: 10941800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motif identification neural design for rapid and sensitive protein family search.
    Wu CH; Chen HL; Lo CJ; McLarty JW
    Pac Symp Biocomput; 1996; ():674-85. PubMed ID: 9390267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins.
    Yang ZR; Thomson R; McNeil P; Esnouf RM
    Bioinformatics; 2005 Aug; 21(16):3369-76. PubMed ID: 15947016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A sequential method for discovering probabilistic motifs in proteins.
    Blekas K; Fotiadis DI; Likas A
    Methods Inf Med; 2004; 43(1):9-12. PubMed ID: 15026827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of protein supersecondary structures based on the artificial neural network method.
    Sun Z; Rao X; Peng L; Xu D
    Protein Eng; 1997 Jul; 10(7):763-9. PubMed ID: 9342142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recognizing protein binding sites using statistical descriptions of their 3D environments.
    Wei L; Altman RB
    Pac Symp Biocomput; 1998; ():497-508. PubMed ID: 9697207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Threading using neural nEtwork (TUNE): the measure of protein sequence-structure compatibility.
    Lin K; May AC; Taylor WR
    Bioinformatics; 2002 Oct; 18(10):1350-7. PubMed ID: 12376379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.