These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Functional role of Ca2+ currents in graded and spike-mediated synaptic transmission between leech heart interneurons. Lu J; Dalton JF; Stokes DR; Calabrese RL J Neurophysiol; 1997 Apr; 77(4):1779-94. PubMed ID: 9114236 [TBL] [Abstract][Full Text] [Related]
4. Activation of intrinsic and synaptic currents in leech heart interneurons by realistic waveforms. Olsen OH; Calabrese RL J Neurosci; 1996 Aug; 16(16):4958-70. PubMed ID: 8756427 [TBL] [Abstract][Full Text] [Related]
5. Hybrid systems analysis of the control of burst duration by low-voltage-activated calcium current in leech heart interneurons. Olypher A; Cymbalyuk G; Calabrese RL J Neurophysiol; 2006 Dec; 96(6):2857-67. PubMed ID: 16943313 [TBL] [Abstract][Full Text] [Related]
6. A model of graded synaptic transmission for use in dynamic network simulations. De Schutter E; Angstadt JD; Calabrese RL J Neurophysiol; 1993 Apr; 69(4):1225-35. PubMed ID: 8388041 [TBL] [Abstract][Full Text] [Related]
7. Calcium currents and graded synaptic transmission between heart interneurons of the leech. Angstadt JD; Calabrese RL J Neurosci; 1991 Mar; 11(3):746-59. PubMed ID: 1848282 [TBL] [Abstract][Full Text] [Related]
8. Slow oscillations of membrane potential in interneurons that control heartbeat in the medicinal leech. Arbas EA; Calabrese RL J Neurosci; 1987 Dec; 7(12):3953-60. PubMed ID: 3694259 [TBL] [Abstract][Full Text] [Related]
9. Motor pattern switching in the heartbeat pattern generator of the medicinal leech: membrane properties and lack of synaptic interaction in switch interneurons. Lu J; Gramoll S; Schmidt J; Calabrese RL J Comp Physiol A; 1999 Mar; 184(3):311-24. PubMed ID: 10319445 [TBL] [Abstract][Full Text] [Related]
10. Graded inhibitory synaptic transmission between leech interneurons: assessing the roles of two kinetically distinct low-threshold Ca currents. Ivanov AI; Calabrese RL J Neurophysiol; 2006 Jul; 96(1):218-34. PubMed ID: 16641379 [TBL] [Abstract][Full Text] [Related]
11. Modulation of spike-mediated synaptic transmission by presynaptic background Ca2+ in leech heart interneurons. Ivanov AI; Calabrese RL J Neurosci; 2003 Feb; 23(4):1206-18. PubMed ID: 12598609 [TBL] [Abstract][Full Text] [Related]
12. Heartbeat control in the medicinal leech: a model system for understanding the origin, coordination, and modulation of rhythmic motor patterns. Calabrese RL; Nadim F; Olsen OH J Neurobiol; 1995 Jul; 27(3):390-402. PubMed ID: 7673897 [TBL] [Abstract][Full Text] [Related]
18. Creation and reduction of a morphologically detailed model of a leech heart interneuron. Tobin AE; Van Hooser SD; Calabrese RL J Neurophysiol; 2006 Oct; 96(4):2107-20. PubMed ID: 16760352 [TBL] [Abstract][Full Text] [Related]
19. Computer simulations of NMDA and non-NMDA receptor-mediated synaptic drive: sensory and supraspinal modulation of neurons and small networks. Tråvén HG; Brodin L; Lansner A; Ekeberg O; Wallén P; Grillner S J Neurophysiol; 1993 Aug; 70(2):695-709. PubMed ID: 8105036 [TBL] [Abstract][Full Text] [Related]
20. Neural control of heartbeat in the leech and in some other invertebrates. Stent GS; Thompson WJ; Calabrese RL Physiol Rev; 1979 Jan; 59(1):101-36. PubMed ID: 220645 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]