BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 8521467)

  • 1. Assembly of phage Mu transpososomes: cooperative transitions assisted by protein and DNA scaffolds.
    Mizuuchi M; Baker TA; Mizuuchi K
    Cell; 1995 Nov; 83(3):375-85. PubMed ID: 8521467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational isomerization in phage Mu transpososome assembly: effects of the transpositional enhancer and of MuB.
    Mizuuchi M; Mizuuchi K
    EMBO J; 2001 Dec; 20(23):6927-35. PubMed ID: 11726528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The wing of the enhancer-binding domain of Mu phage transposase is flexible and is essential for efficient transposition.
    Clubb RT; Mizuuchi M; Huth JR; Omichinski JG; Savilahti H; Mizuuchi K; Clore GM; Gronenborn AM
    Proc Natl Acad Sci U S A; 1996 Feb; 93(3):1146-50. PubMed ID: 8577730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mu transpositional recombination: donor DNA cleavage and strand transfer in trans by the Mu transposase.
    Savilahti H; Mizuuchi K
    Cell; 1996 Apr; 85(2):271-80. PubMed ID: 8612279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MuB protein allosterically activates strand transfer by the transposase of phage Mu.
    Baker TA; Mizuuchi M; Mizuuchi K
    Cell; 1991 Jun; 65(6):1003-13. PubMed ID: 1646076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of phage Mu enhancer and termini that specify the assembly of a topologically unique interwrapped transpososome.
    Yin Z; Suzuki A; Lou Z; Jayaram M; Harshey RM
    J Mol Biol; 2007 Sep; 372(2):382-96. PubMed ID: 17669422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Positional information within the Mu transposase tetramer: catalytic contributions of individual monomers.
    Yang JY; Jayaram M; Harshey RM
    Cell; 1996 May; 85(3):447-55. PubMed ID: 8616899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ClpX and MuB interact with overlapping regions of Mu transposase: implications for control of the transposition pathway.
    Levchenko I; Yamauchi M; Baker TA
    Genes Dev; 1997 Jun; 11(12):1561-72. PubMed ID: 9203582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The phage Mu transpososome core: DNA requirements for assembly and function.
    Savilahti H; Rice PA; Mizuuchi K
    EMBO J; 1995 Oct; 14(19):4893-903. PubMed ID: 7588618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Target immunity during Mu DNA transposition. Transpososome assembly and DNA looping enhance MuA-mediated disassembly of the MuB target complex.
    Greene EC; Mizuuchi K
    Mol Cell; 2002 Dec; 10(6):1367-78. PubMed ID: 12504012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of mutations in the Mu-host junction region on transpososome assembly.
    Coros CJ; Chaconas G
    J Mol Biol; 2001 Jul; 310(2):299-309. PubMed ID: 11428891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D reconstruction of the Mu transposase and the Type 1 transpososome: a structural framework for Mu DNA transposition.
    Yuan JF; Beniac DR; Chaconas G; Ottensmeyer FP
    Genes Dev; 2005 Apr; 19(7):840-52. PubMed ID: 15774720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Congruence of in vivo and in vitro insertion patterns in hot E. coli gene targets of transposable element Mu: opposing roles of MuB in target capture and integration.
    Ge J; Harshey RM
    J Mol Biol; 2008 Jul; 380(4):598-607. PubMed ID: 18556020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Mu three-site synapse: a strained assembly platform in which delivery of the L1 transposase binding site triggers catalytic commitment.
    Kobryn K; Watson MA; Allison RG; Chaconas G
    Mol Cell; 2002 Sep; 10(3):659-69. PubMed ID: 12408832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dynamic Mu transpososome: MuB activation prevents disintegration.
    Lemberg KM; Schweidenback CT; Baker TA
    J Mol Biol; 2007 Dec; 374(5):1158-71. PubMed ID: 17988683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assembly of the active form of the transposase-Mu DNA complex: a critical control point in Mu transposition.
    Mizuuchi M; Baker TA; Mizuuchi K
    Cell; 1992 Jul; 70(2):303-11. PubMed ID: 1322248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Mu transposition requires interaction of transposase with a DNA sequence at the Mu operator: implications for regulation.
    Mizuuchi M; Mizuuchi K
    Cell; 1989 Jul; 58(2):399-408. PubMed ID: 2546681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional comparison of the transposition core machineries of phage Mu and Haemophilus influenzae Mu-like prophage Hin-Mu reveals interchangeable components.
    Saariaho AH; Lamberg A; Elo S; Savilahti H
    Virology; 2005 Jan; 331(1):6-19. PubMed ID: 15582649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A unique right end-enhancer complex precedes synapsis of Mu ends: the enhancer is sequestered within the transpososome throughout transposition.
    Pathania S; Jayaram M; Harshey RM
    EMBO J; 2003 Jul; 22(14):3725-36. PubMed ID: 12853487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An ATP-ADP switch in MuB controls progression of the Mu transposition pathway.
    Yamauchi M; Baker TA
    EMBO J; 1998 Sep; 17(18):5509-18. PubMed ID: 9736628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.