These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 8521809)

  • 1. A synthetic peptide corresponding to a conserved heptad repeat domain is a potent inhibitor of Sendai virus-cell fusion: an emerging similarity with functional domains of other viruses.
    Rapaport D; Ovadia M; Shai Y
    EMBO J; 1995 Nov; 14(22):5524-31. PubMed ID: 8521809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leveraging the therapeutic, biological, and self-assembling potential of peptides for the treatment of viral infections.
    Monroe MK; Wang H; Anderson CF; Jia H; Flexner C; Cui H
    J Control Release; 2022 Aug; 348():1028-1049. PubMed ID: 35752254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of Viral Membrane Fusion by Peptides and Approaches to Peptide Design.
    Düzgüneş N; Fernandez-Fuentes N; Konopka K
    Pathogens; 2021 Dec; 10(12):. PubMed ID: 34959554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antivirals targeting paramyxovirus membrane fusion.
    Contreras EM; Monreal IA; Ruvalcaba M; Ortega V; Aguilar HC
    Curr Opin Virol; 2021 Dec; 51():34-47. PubMed ID: 34592709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide-based Fusion Inhibitors for Preventing the Six-helix Bundle Formation of Class I Fusion Proteins: HIV and Beyond.
    Monteiro A; Yu KOA; Hicar MD
    Curr HIV Res; 2021; 19(6):465-475. PubMed ID: 34503415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide and peptide-based inhibitors of SARS-CoV-2 entry.
    Schütz D; Ruiz-Blanco YB; Münch J; Kirchhoff F; Sanchez-Garcia E; Müller JA
    Adv Drug Deliv Rev; 2020 Dec; 167():47-65. PubMed ID: 33189768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human parainfluenza virus fusion complex glycoproteins imaged in action on authentic viral surfaces.
    Marcink TC; Wang T; des Georges A; Porotto M; Moscona A
    PLoS Pathog; 2020 Sep; 16(9):e1008883. PubMed ID: 32956394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broad-Spectrum Antiviral Entry Inhibition by Interfacially Active Peptides.
    Hoffmann AR; Guha S; Wu E; Ghimire J; Wang Y; He J; Garry RF; Wimley WC
    J Virol; 2020 Nov; 94(23):. PubMed ID: 32907984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entry Inhibitors: Efficient Means to Block Viral Infection.
    Pattnaik GP; Chakraborty H
    J Membr Biol; 2020 Oct; 253(5):425-444. PubMed ID: 32862236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membranotropic peptides mediating viral entry.
    Falanga A; Galdiero M; Morelli G; Galdiero S
    Pept Sci (Hoboken); 2018 Sep; 110(5):e24040. PubMed ID: 32328541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transgenesis and Genome Editing of Mouse Spermatogonial Stem Cells by Lentivirus Pseudotyped with Sendai Virus F Protein.
    Shinohara T; Kanatsu-Shinohara M
    Stem Cell Reports; 2020 Mar; 14(3):447-461. PubMed ID: 32160520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-Guided Improvement of a Dual HPIV3/RSV Fusion Inhibitor.
    Outlaw VK; Lemke JT; Zhu Y; Gellman SH; Porotto M; Moscona A
    J Am Chem Soc; 2020 Feb; 142(5):2140-2144. PubMed ID: 31951396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual Inhibition of Human Parainfluenza Type 3 and Respiratory Syncytial Virus Infectivity with a Single Agent.
    Outlaw VK; Bottom-Tanzer S; Kreitler DF; Gellman SH; Porotto M; Moscona A
    J Am Chem Soc; 2019 Aug; 141(32):12648-12656. PubMed ID: 31268705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Synthetic Molecular Evolution to the Discovery of Antimicrobial Peptides.
    Wimley WC
    Adv Exp Med Biol; 2019; 1117():241-255. PubMed ID: 30980361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting malaria parasite invasion of red blood cells as an antimalarial strategy.
    Burns AL; Dans MG; Balbin JM; de Koning-Ward TF; Gilson PR; Beeson JG; Boyle MJ; Wilson DW
    FEMS Microbiol Rev; 2019 May; 43(3):223-238. PubMed ID: 30753425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of Flaviviruses by Targeting a Conserved Pocket on the Viral Envelope Protein.
    de Wispelaere M; Lian W; Potisopon S; Li PC; Jang J; Ficarro SB; Clark MJ; Zhu X; Kaplan JB; Pitts JD; Wales TE; Wang J; Engen JR; Marto JA; Gray NS; Yang PL
    Cell Chem Biol; 2018 Aug; 25(8):1006-1016.e8. PubMed ID: 29937406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative investigation of the direct interaction between Hemagglutinin and fusion proteins of Peste des petits ruminant virus using surface Plasmon resonance.
    Meng X; Deng R; Zhu X; Zhang Z
    Virol J; 2018 Jan; 15(1):21. PubMed ID: 29357882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipidation increases antiviral activities of coronavirus fusion-inhibiting peptides.
    Park JE; Gallagher T
    Virology; 2017 Nov; 511():9-18. PubMed ID: 28802158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Small-molecule HIV Entry Inhibitors Specifically Targeting gp120 or gp41.
    Lu L; Yu F; Cai L; Debnath AK; Jiang S
    Curr Top Med Chem; 2016; 16(10):1074-90. PubMed ID: 26324044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholesterol-conjugated peptide antivirals: a path to a rapid response to emerging viral diseases.
    Pessi A
    J Pept Sci; 2015 May; 21(5):379-86. PubMed ID: 25331523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.