These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 8521843)

  • 1. Cordycepin blocks recovery of non-heat-shock mRNA translation following heat shock in Drosophila.
    Duncan RF
    Eur J Biochem; 1995 Nov; 233(3):784-92. PubMed ID: 8521843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The polyadenylation inhibitor cordycepin (3'dA) causes a decline in c-MYC mRNA levels without affecting c-MYC protein levels.
    Ioannidis P; Courtis N; Havredaki M; Michailakis E; Tsiapalis CM; Trangas T
    Oncogene; 1999 Jan; 18(1):117-25. PubMed ID: 9926926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preferential deadenylation of Hsp70 mRNA plays a key role in regulating Hsp70 expression in Drosophila melanogaster.
    Dellavalle RP; Petersen R; Lindquist S
    Mol Cell Biol; 1994 Jun; 14(6):3646-59. PubMed ID: 7515148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of mRNAs coding for translationally regulated heat-shock proteins in non-heat-shocked thymic lymphocytes.
    Colbert RA; Young DA
    J Biol Chem; 1987 Jul; 262(21):9939-41. PubMed ID: 2440866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element.
    McGrew LL; Dworkin-Rastl E; Dworkin MB; Richter JD
    Genes Dev; 1989 Jun; 3(6):803-15. PubMed ID: 2568313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Meiotic maturation in Xenopus requires polyadenylation of multiple mRNAs.
    Barkoff A; Ballantyne S; Wickens M
    EMBO J; 1998 Jun; 17(11):3168-75. PubMed ID: 9606198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of poly(A) binding protein prevents maturation-specific deadenylation and translational inactivation in Xenopus oocytes.
    Wormington M; Searfoss AM; Hurney CA
    EMBO J; 1996 Feb; 15(4):900-9. PubMed ID: 8631310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CPEB controls the cytoplasmic polyadenylation of cyclin, Cdk2 and c-mos mRNAs and is necessary for oocyte maturation in Xenopus.
    Stebbins-Boaz B; Hake LE; Richter JD
    EMBO J; 1996 May; 15(10):2582-92. PubMed ID: 8665866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of a Drosophila heat-shock protein in Xenopus oocytes: conserved and divergent regulatory signals.
    Bienz M; Pelham HR
    EMBO J; 1982; 1(12):1583-8. PubMed ID: 6821336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat shock and recovery are mediated by different translational mechanisms.
    DiDomenico BJ; Bugaisky GE; Lindquist S
    Proc Natl Acad Sci U S A; 1982 Oct; 79(20):6181-5. PubMed ID: 6815647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence and structure determinants of Drosophila Hsp70 mRNA translation: 5'UTR secondary structure specifically inhibits heat shock protein mRNA translation.
    Hess MA; Duncan RF
    Nucleic Acids Res; 1996 Jun; 24(12):2441-9. PubMed ID: 8710519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cordycepin (3'-deoxyadenosine), an inhibitor of mRNA polyadenylation, suppresses proliferation and activates apoptosis in human epithelial endometriotic cells in vitro.
    Imesch P; Hornung R; Fink D; Fedier A
    Gynecol Obstet Invest; 2011; 72(1):43-9. PubMed ID: 21196698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. m7GpppG cap dependence for efficient translation of Drosophila 70-kDa heat-shock-protein (Hsp70) mRNA.
    Song HJ; Gallie DR; Duncan RF
    Eur J Biochem; 1995 Sep; 232(3):778-88. PubMed ID: 7588716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early heat shock proteins in primary thymocytes. Evidence for transcriptional and translational regulation.
    Maytin EV; Colbert RA; Young DA
    J Biol Chem; 1985 Feb; 260(4):2384-92. PubMed ID: 3871771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The heat-shock response in Drosophila KC 161 cells. mRNA competition is the main explanation for reduction of normal protein synthesis.
    Jackson RJ
    Eur J Biochem; 1986 Aug; 158(3):623-34. PubMed ID: 2426111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translational regulation of Hsp90 mRNA. AUG-proximal 5'-untranslated region elements essential for preferential heat shock translation.
    Ahmed R; Duncan RF
    J Biol Chem; 2004 Nov; 279(48):49919-30. PubMed ID: 15347681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translational control during recovery from heat shock in the absence of heat shock proteins.
    Gallie DR; Pitto L
    Biochem Biophys Res Commun; 1996 Oct; 227(2):462-7. PubMed ID: 8878537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. mTAIL-seq reveals dynamic poly(A) tail regulation in oocyte-to-embryo development.
    Lim J; Lee M; Son A; Chang H; Kim VN
    Genes Dev; 2016 Jul; 30(14):1671-82. PubMed ID: 27445395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat shock causes destabilization of specific mRNAs and destruction of endoplasmic reticulum in barley aleurone cells.
    Belanger FC; Brodl MR; Ho TH
    Proc Natl Acad Sci U S A; 1986 Mar; 83(5):1354-8. PubMed ID: 3485284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced translation of mRNAs encoding proteins involved in mRNA translation during recovery from heat shock.
    Datu AK; Bag J
    PLoS One; 2013; 8(5):e64171. PubMed ID: 23696868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.