These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 8522060)
1. Galactosemic neuropathy in transgenic mice for human aldose reductase. Yagihashi S; Yamagishi S; Wada R; Sugimoto K; Baba M; Wong HG; Fujimoto J; Nishimura C; Kokai Y Diabetes; 1996 Jan; 45(1):56-9. PubMed ID: 8522060 [TBL] [Abstract][Full Text] [Related]
2. Transgenic mice overexpressing aldose reductase in Schwann cells show more severe nerve conduction velocity deficit and oxidative stress under hyperglycemic stress. Song Z; Fu DT; Chan YS; Leung S; Chung SS; Chung SK Mol Cell Neurosci; 2003 Aug; 23(4):638-47. PubMed ID: 12932443 [TBL] [Abstract][Full Text] [Related]
3. Coexistence of nerve conduction deficit with increased Na(+)-K(+)-ATPase activity in galactose-fed mice. Implications for polyol pathway and diabetic neuropathy. Calcutt NA; Tomlinson DR; Biswas S Diabetes; 1990 Jun; 39(6):663-6. PubMed ID: 2161366 [TBL] [Abstract][Full Text] [Related]
4. Neuropathy in diabetic mice overexpressing human aldose reductase and effects of aldose reductase inhibitor. Yagihashi S; Yamagishi SI; Wada Ri R; Baba M; Hohman TC; Yabe-Nishimura C; Kokai Y Brain; 2001 Dec; 124(Pt 12):2448-58. PubMed ID: 11701599 [TBL] [Abstract][Full Text] [Related]
5. Galactosemia produces ARI-preventable nodal changes similar to those of diabetic neuropathy. Kamijo M; Basso M; Cherian PV; Hohman TC; Sima AA Diabetes Res Clin Pract; 1994 Sep; 25(2):117-29. PubMed ID: 7821191 [TBL] [Abstract][Full Text] [Related]
6. Polyol pathway activity in nervous tissues of diabetic and galactose-fed rats: effect of dietary galactose withdrawal or tolrestat intervention therapy. Sredy J; Sawicki DR; Notvest RR J Diabet Complications; 1991; 5(1):42-7. PubMed ID: 1830318 [TBL] [Abstract][Full Text] [Related]
8. Adenosine triphosphatase in nerves and ganglia of rats with streptozotocin-induced diabetes or galactosaemia; effects of aldose reductase inhibition. Lambourne JE; Brown AM; Calcutt N; Tomlinson DR; Willars GB Diabetologia; 1988 Jun; 31(6):379-84. PubMed ID: 2970984 [TBL] [Abstract][Full Text] [Related]
9. Nerve conduction velocity and axonal transport of 6-phosphofructokinase activity in galactose-fed rats. Willars GB; Calcutt NA; Tomlinson DR J Neurol Sci; 1991 Jul; 104(1):46-51. PubMed ID: 1717661 [TBL] [Abstract][Full Text] [Related]
10. Demonstration that polyol accumulation is responsible for diabetic cataract by the use of transgenic mice expressing the aldose reductase gene in the lens. Lee AY; Chung SK; Chung SS Proc Natl Acad Sci U S A; 1995 Mar; 92(7):2780-4. PubMed ID: 7708723 [TBL] [Abstract][Full Text] [Related]
11. BDNF attenuates functional and structural disorders in nerves of galactose-fed rats. Mizisin AP; Bache M; DiStefano PS; Acheson A; Lindsay RM; Calcutt NA J Neuropathol Exp Neurol; 1997 Dec; 56(12):1290-301. PubMed ID: 9413278 [TBL] [Abstract][Full Text] [Related]
12. Normalization of lens protein kinase Cgamma in galactosemic dogs by a novel aldose reductase inhibitor. Takemoto DJ; Harris R; Brightman A; McGill J; Hua D; Davidson H; Fenwick B; Wagner LM Vet Ophthalmol; 2004; 7(3):163-7. PubMed ID: 15091323 [TBL] [Abstract][Full Text] [Related]
13. Aldose reductase inhibition increases CNTF-like bioactivity and protein in sciatic nerves from galactose-fed and normal rats. Mizisin AP; Calcutt NA; DiStefano PS; Acheson A; Longo FM Diabetes; 1997 Apr; 46(4):647-52. PubMed ID: 9075806 [TBL] [Abstract][Full Text] [Related]
14. Does galactose feeding provide a valid model of consequences of exaggerated polyol-pathway flux in peripheral nerve in experimental diabetes? Willars GB; Lambourne JE; Tomlinson DR Diabetes; 1987 Dec; 36(12):1425-31. PubMed ID: 3678622 [TBL] [Abstract][Full Text] [Related]
15. The prevention of biochemical changes in lens, retina, and nerve of galactosemic dogs by the aldose reductase inhibitor AL01576. Lou MF; Dickerson JE; Chandler ML; Brazzell RK; York BM J Ocul Pharmacol; 1989; 5(3):233-40. PubMed ID: 2516529 [TBL] [Abstract][Full Text] [Related]
16. The role of cyclic adenosine 3',5'-monophosphate and polyol metabolism in diabetic neuropathy. Shindo H; Tawata M; Aida K; Onaya T J Clin Endocrinol Metab; 1992 Feb; 74(2):393-8. PubMed ID: 1370506 [TBL] [Abstract][Full Text] [Related]
17. Statil-sensitive polyol formation in nerve of galactose-fed mice. Calcutt NA; Willars GB; Tomlinson DR Metabolism; 1988 May; 37(5):450-3. PubMed ID: 3130544 [TBL] [Abstract][Full Text] [Related]
18. Effects of polyol pathway hyperactivity on protein kinase C activity, nociceptive peptide expression, and neuronal structure in dorsal root ganglia in diabetic mice. Uehara K; Yamagishi S; Otsuki S; Chin S; Yagihashi S Diabetes; 2004 Dec; 53(12):3239-47. PubMed ID: 15561956 [TBL] [Abstract][Full Text] [Related]
19. A mouse model of galactose-induced cataracts. Ai Y; Zheng Z; O'Brien-Jenkins A; Bernard DJ; Wynshaw-Boris T; Ning C; Reynolds R; Segal S; Huang K; Stambolian D Hum Mol Genet; 2000 Jul; 9(12):1821-7. PubMed ID: 10915771 [TBL] [Abstract][Full Text] [Related]
20. Regulation of aldose reductase gene expression in renal cortex and medulla of rats. Dorin RI; Shah VO; Kaplan DL; Vela BS; Zager PG Diabetologia; 1995 Jan; 38(1):46-54. PubMed ID: 7744229 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]