These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
382 related articles for article (PubMed ID: 8522528)
41. Effect of the amino acid substitution in the DNA-binding domain of the Fur regulator on production of pyoverdine. Valešová R; Palyzová A; Marešová H; Stěpánek V; Babiak P; Kyslík P Folia Microbiol (Praha); 2013 Jul; 58(4):311-7. PubMed ID: 23180123 [TBL] [Abstract][Full Text] [Related]
42. The ferric uptake regulator (Fur) protein from Bradyrhizobium japonicum is an iron-responsive transcriptional repressor in vitro. Friedman YE; O'Brian MR J Biol Chem; 2004 Jul; 279(31):32100-5. PubMed ID: 15148310 [TBL] [Abstract][Full Text] [Related]
43. Fur regulates the expression of iron-stress genes in the cyanobacterium Synechococcus sp. strain PCC 7942. Ghassemian M; Straus NA Microbiology (Reading); 1996 Jun; 142 ( Pt 6)():1469-1476. PubMed ID: 8704986 [TBL] [Abstract][Full Text] [Related]
44. Non-specific interference of cobalt with siderophore-dependent iron uptake pathways. Carballido Lopez A; Cunrath O; Forster A; Pérard J; Graulier G; Legendre R; Varet H; Sismeiro O; Perraud Q; Pesset B; Saint Auguste P; Bumann D; Mislin GLA; Coppee JY; Michaud-Soret I; Fechter P; Schalk IJ Metallomics; 2019 Nov; 11(11):1937-1951. PubMed ID: 31633703 [TBL] [Abstract][Full Text] [Related]
45. Dual regulation of catecholate siderophore biosynthesis in Azotobacter vinelandii by iron and oxidative stress. Tindale AE; Mehrotra M; Ottem D; Page WJ Microbiology (Reading); 2000 Jul; 146 ( Pt 7)():1617-1626. PubMed ID: 10878126 [TBL] [Abstract][Full Text] [Related]
46. The Gac/Rsm and cyclic-di-GMP signalling networks coordinately regulate iron uptake in Pseudomonas aeruginosa. Frangipani E; Visaggio D; Heeb S; Kaever V; Cámara M; Visca P; Imperi F Environ Microbiol; 2014 Mar; 16(3):676-88. PubMed ID: 23796404 [TBL] [Abstract][Full Text] [Related]
47. Transcriptional regulation of Salmochelin glucosyltransferase by Fur in Salmonella. Lim D; Kim K; Song M; Jeong JH; Chang JH; Kim SR; Hong CW; Im SS; Park SH; Lee JC; Shin M Biochem Biophys Res Commun; 2020 Aug; 529(1):70-76. PubMed ID: 32560822 [TBL] [Abstract][Full Text] [Related]
48. A novel set of vectors for Fur-controlled protein expression under iron deprivation in Escherichia coli. Pakarian P; Pawelek PD BMC Biotechnol; 2016 Sep; 16(1):68. PubMed ID: 27619907 [TBL] [Abstract][Full Text] [Related]
49. Sequential induction of Fur-regulated genes in response to iron limitation in Pi H; Helmann JD Proc Natl Acad Sci U S A; 2017 Nov; 114(48):12785-12790. PubMed ID: 29133393 [TBL] [Abstract][Full Text] [Related]
50. Identification of a DNA sequence motif required for expression of iron-regulated genes in pseudomonads. Rombel IT; McMorran BJ; Lamont IL Mol Gen Genet; 1995 Feb; 246(4):519-28. PubMed ID: 7891666 [TBL] [Abstract][Full Text] [Related]
51. Sequence heterogeneity of the ferripyoverdine uptake (fpvA), but not the ferric uptake regulator (fur), genes among strains of the fluorescent pseudomonads Pseudomonas aeruginosa, Pseudomonas aureofaciens, Pseudomonas fluorescens and Pseudomonas putida. Thupvong T; Wiideman A; Dunn D; Oreschak K; Jankowicz B; Doering J; Castignetti D Biometals; 1999 Sep; 12(3):265-74. PubMed ID: 10581691 [TBL] [Abstract][Full Text] [Related]
52. Molecular characterization of the Fur protein of Listeria monocytogenes. Ledala N; Pearson SL; Wilkinson BJ; Jayaswal RK Microbiology (Reading); 2007 Apr; 153(Pt 4):1103-1111. PubMed ID: 17379719 [TBL] [Abstract][Full Text] [Related]
53. Effects of iron and temperature on expression of the Pseudomonas aeruginosa tolQRA genes: role of the ferric uptake regulator. Lafontaine ER; Sokol PA J Bacteriol; 1998 Jun; 180(11):2836-41. PubMed ID: 9603869 [TBL] [Abstract][Full Text] [Related]
54. Role of a Fur homolog in iron metabolism in Nitrosomonas europaea. Vajrala N; Sayavedra-Soto LA; Bottomley PJ; Arp DJ BMC Microbiol; 2011 Feb; 11():37. PubMed ID: 21338516 [TBL] [Abstract][Full Text] [Related]
55. Impact of siderophore production on Pseudomonas aeruginosa infections in immunosuppressed mice. Takase H; Nitanai H; Hoshino K; Otani T Infect Immun; 2000 Apr; 68(4):1834-9. PubMed ID: 10722571 [TBL] [Abstract][Full Text] [Related]
56. Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria. Troxell B; Hassan HM Front Cell Infect Microbiol; 2013; 3():59. PubMed ID: 24106689 [TBL] [Abstract][Full Text] [Related]
57. FvbA is required for vibriobactin utilization in Pseudomonas aeruginosa. Elias S; Degtyar E; Banin E Microbiology (Reading); 2011 Jul; 157(Pt 7):2172-2180. PubMed ID: 21546589 [TBL] [Abstract][Full Text] [Related]
58. Copurification of the FpvA ferric pyoverdin receptor of Pseudomonas aeruginosa with its iron-free ligand: implications for siderophore-mediated iron transport. Schalk IJ; Kyslik P; Prome D; van Dorsselaer A; Poole K; Abdallah MA; Pattus F Biochemistry; 1999 Jul; 38(29):9357-65. PubMed ID: 10413510 [TBL] [Abstract][Full Text] [Related]
59. Analysis of Fur binding to operator sequences within the Neisseria gonorrhoeae fbpA promoter. Desai PJ; Angerer A; Genco CA J Bacteriol; 1996 Aug; 178(16):5020-3. PubMed ID: 8759870 [TBL] [Abstract][Full Text] [Related]
60. Cloning and transcription regulation of the ferric uptake regulatory gene of Campylobacter jejuni TGH9011. Chan VL; Louie H; Bingham HL Gene; 1995 Oct; 164(1):25-31. PubMed ID: 7590316 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]