These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 8522543)

  • 1. The mechanical properties of the human heel pad: a paradox resolved.
    Aerts P; Ker RF; De Clercq D; Ilsley DW; Alexander RM
    J Biomech; 1995 Nov; 28(11):1299-308. PubMed ID: 8522543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of the heel pad and shank soft tissue during impacts: a further resolution of a paradox.
    Pain MT; Challis JH
    J Biomech; 2001 Mar; 34(3):327-33. PubMed ID: 11182123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The time-dependent mechanical properties of the human heel pad in the context of locomotion.
    Ker RF
    J Exp Biol; 1996 Jul; 199(Pt 7):1501-8. PubMed ID: 8699155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The damping properties of the venous plexus of the heel region of the foot during simulated heelstrike.
    Weijers RE; Kessels AG; Kemerink GJ
    J Biomech; 2005 Dec; 38(12):2423-30. PubMed ID: 16214490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the mechanical properties of the heel pad between young and elderly adults.
    Hsu TC; Wang CL; Tsai WC; Kuo JK; Tang FT
    Arch Phys Med Rehabil; 1998 Sep; 79(9):1101-4. PubMed ID: 9749691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heel skin stiffness effect on the hind foot biomechanics during heel strike.
    Gu Y; Li J; Ren X; Lake MJ; Zeng Y
    Skin Res Technol; 2010 Aug; 16(3):291-6. PubMed ID: 20636997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force-deformation properties of the human heel pad during barefoot walking.
    Wearing SC; Hooper SL; Dubois P; Smeathers JE; Dietze A
    Med Sci Sports Exerc; 2014 Aug; 46(8):1588-94. PubMed ID: 24504425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical energy and effective foot mass during impact loading of walking and running.
    Chi KJ; Schmitt D
    J Biomech; 2005 Jul; 38(7):1387-95. PubMed ID: 15922749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanical characteristics of the human heel pad during foot strike in running: an in vivo cineradiographic study.
    De Clercq D; Aerts P; Kunnen M
    J Biomech; 1994 Oct; 27(10):1213-22. PubMed ID: 7962009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mathematical method for quantifying in vivo mechanical behaviour of heel pad under dynamic load.
    Naemi R; Chatzistergos PE; Chockalingam N
    Med Biol Eng Comput; 2016 Mar; 54(2-3):341-50. PubMed ID: 26044551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation on the load-displacement curves of a human healthy heel pad: In vivo compression data compared to numerical results.
    Fontanella CG; Matteoli S; Carniel EL; Wilhjelm JE; Virga A; Corvi A; Natali AN
    Med Eng Phys; 2012 Nov; 34(9):1253-9. PubMed ID: 22265099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of isolation on the mechanics of the human heel pad.
    Aerts P; Ker RF; de Clercq D; Ilsley DW
    J Anat; 1996 Apr; 188 ( Pt 2)(Pt 2):417-23. PubMed ID: 8621341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A clinically applicable non-invasive method to quantitatively assess the visco-hyperelastic properties of human heel pad, implications for assessing the risk of mechanical trauma.
    Behforootan S; Chatzistergos PE; Chockalingam N; Naemi R
    J Mech Behav Biomed Mater; 2017 Apr; 68():287-295. PubMed ID: 28222391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigations into the fat pads of the sole of the foot: heel pressure studies.
    Jahss MH; Kummer F; Michelson JD
    Foot Ankle; 1992 Jun; 13(5):227-32. PubMed ID: 1624185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shock absorbency of factors in the shoe/heel interaction--with special focus on role of the heel pad.
    Jørgensen U; Bojsen-Møller F
    Foot Ankle; 1989 Jun; 9(6):294-9. PubMed ID: 2744671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the calcaneal heel pad and polymeric shock absorbers in attenuation of heel strike impact.
    Noe DA; Voto SJ; Hoffmann MS; Askew MJ; Gradisar IA
    J Biomed Eng; 1993 Jan; 15(1):23-6. PubMed ID: 8419676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo examination of the dynamic properties of the human heel pad.
    Kinoshita H; Ogawa T; Kuzuhara K; Ikuta K
    Int J Sports Med; 1993 Aug; 14(6):312-9. PubMed ID: 8407060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the optimum heel pad stiffness: a modeling study.
    Lin CY; Chuang HJ; Cortes DH
    Australas Phys Eng Sci Med; 2017 Sep; 40(3):585-593. PubMed ID: 28653146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic material characterization of the human heel pad based on in vivo experimental tests and numerical analysis.
    Kardeh M; Vogl TJ; Huebner F; Nelson K; Stief F; Silber G
    Med Eng Phys; 2016 Sep; 38(9):940-5. PubMed ID: 27387903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microchambers and macrochambers in heel pads: are they functionally different?
    Hsu CC; Tsai WC; Wang CL; Pao SH; Shau YW; Chuan YS
    J Appl Physiol (1985); 2007 Jun; 102(6):2227-31. PubMed ID: 17272407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.