These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 8522548)

  • 21. Effects of smear layer removal agents on the physical properties and microstructure of mineral trioxide aggregate cement.
    Ballal NV; Sona M; Tay FR
    J Dent; 2017 Nov; 66():32-36. PubMed ID: 28867660
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cement lines of secondary osteons in human bone are not mineral-deficient: new data in a historical perspective.
    Skedros JG; Holmes JL; Vajda EG; Bloebaum RD
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Sep; 286(1):781-803. PubMed ID: 16037990
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of crosslinking on the mechanical properties of mineralized and non-mineralized collagen fibers.
    Bou-Akl T; Banglmaier R; Miller R; VandeVord P
    J Biomed Mater Res A; 2013 Sep; 101(9):2507-14. PubMed ID: 23359539
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Collagen fiber organization is related to mechanical properties and remodeling in equine bone. A comparison of two methods.
    Martin RB; Lau ST; Mathews PV; Gibson VA; Stover SM
    J Biomech; 1996 Dec; 29(12):1515-21. PubMed ID: 8945649
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heterogeneity of the mechanical properties of demineralized bone.
    Catanese J; Iverson EP; Ng RK; Keaveny TM
    J Biomech; 1999 Dec; 32(12):1365-9. PubMed ID: 10569717
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of filler loading and morphology on the mechanical properties of contemporary composites.
    Kim KH; Ong JL; Okuno O
    J Prosthet Dent; 2002 Jun; 87(6):642-9. PubMed ID: 12131887
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contribution of collagen and mineral to the elastic-plastic properties of bone.
    Burstein AH; Zika JM; Heiple KG; Klein L
    J Bone Joint Surg Am; 1975 Oct; 57(7):956-61. PubMed ID: 1184645
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acoustic microscope study of the elastic properties of fluorapatite and hydroxyapatite, tooth enamel and bone.
    Gardner TN; Elliott JC; Sklar Z; Briggs GA
    J Biomech; 1992 Nov; 25(11):1265-77. PubMed ID: 1328251
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Correlations between nanostructure and micromechanical properties of healing bone.
    Hoerth RM; Kerschnitzki M; Aido M; Schmidt I; Burghammer M; Duda GN; Fratzl P; Willie BM; Wagermaier W
    J Mech Behav Biomed Mater; 2018 Jan; 77():258-266. PubMed ID: 28957701
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of porosity and mineral content on the elastic constants of cortical bone: a multiscale approach.
    Martínez-Reina J; Domínguez J; García-Aznar JM
    Biomech Model Mechanobiol; 2011 Jun; 10(3):309-22. PubMed ID: 20596743
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles.
    Jäger I; Fratzl P
    Biophys J; 2000 Oct; 79(4):1737-46. PubMed ID: 11023882
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biochemical and immunocytochemical characterization of mineral binding proteoglycans in rat bone.
    Takagi M; Maeno M; Kagami A; Takahashi Y; Otsuka K
    J Histochem Cytochem; 1991 Jan; 39(1):41-50. PubMed ID: 1898498
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Elastic moduli of untreated, demineralized and deproteinized cortical bone: validation of a theoretical model of bone as an interpenetrating composite material.
    Hamed E; Novitskaya E; Li J; Chen PY; Jasiuk I; McKittrick J
    Acta Biomater; 2012 Mar; 8(3):1080-92. PubMed ID: 22115696
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Tensile mechanical characteristics of decalcified cortical bone matrix].
    Luo G; Zhang Y; Jiang Y; Huang F; Qin T
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Apr; 26(4):501-5. PubMed ID: 22568337
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of the mechanical properties of demineralized bone.
    Summitt MC; Reisinger KD
    J Biomed Mater Res A; 2003 Dec; 67(3):742-50. PubMed ID: 14613221
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elastic properties of collagen in bone determined by measuring the Debye-Waller factor.
    Sasaki N; Shirakawa H; Nozoe T; Furusawa K
    J Biomech; 2013 Nov; 46(16):2824-30. PubMed ID: 24090493
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of demineralization mode and particle size of allogeneic bone powder on its physical and chemical properties.
    Song KX; Ji SL; Zhao YJ; Zhang HR; Ma RX; Zhang JY; Hu YC
    Cell Tissue Bank; 2023 Mar; 24(1):203-210. PubMed ID: 35831637
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determinants of the mechanical properties of bones.
    Martin RB
    J Biomech; 1991; 24 Suppl 1():79-88. PubMed ID: 1842337
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus.
    Choi K; Kuhn JL; Ciarelli MJ; Goldstein SA
    J Biomech; 1990; 23(11):1103-13. PubMed ID: 2277045
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influences of spherical tip radius, contact depth, and contact area on nanoindentation properties of bone.
    Paietta RC; Campbell SE; Ferguson VL
    J Biomech; 2011 Jan; 44(2):285-90. PubMed ID: 21092970
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.