BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

690 related articles for article (PubMed ID: 8522958)

  • 1. Dopaminergic inhibition of catecholamine secretion from chromaffin cells: evidence that inhibition is mediated by D4 and D5 dopamine receptors.
    Dahmer MK; Senogles SE
    J Neurochem; 1996 Jan; 66(1):222-32. PubMed ID: 8522958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential inhibition of secretagogue-stimulated sodium uptake in adrenal chromaffin cells by activation of D4 and D5 dopamine receptors.
    Dahmer MK; Senogles SE
    J Neurochem; 1996 Nov; 67(5):1960-4. PubMed ID: 8863501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dopamine receptor coupling to adenylyl cyclase in rat olfactory pathway: a combined pharmacological-radioautographic approach.
    Coronas V; Krantic S; Jourdan F; Moyse E
    Neuroscience; 1999 Apr; 90(1):69-78. PubMed ID: 10188934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of hormonally induced inositol trisphosphate production in Transfected GH4C1 cells: A novel role for the D5 subtype of the dopamine receptor.
    White BH; Kimura K; Sidhu A
    Neuroendocrinology; 1999 Mar; 69(3):209-16. PubMed ID: 10087453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pertussis toxin attenuates D2 inhibition and enhances D1 stimulation of adenylate cyclase by dopamine in rat striatum.
    Olianas MC; Onali P
    J Neurochem; 1987 May; 48(5):1443-7. PubMed ID: 2951497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopaminergic receptors linked to adenylate cyclase in human cerebromicrovascular endothelium.
    Bacic F; Uematsu S; McCarron RM; Spatz M
    J Neurochem; 1991 Nov; 57(5):1774-80. PubMed ID: 1681036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory mechanism of bromocriptine on catecholamine release evoked by cholinergic stimulation and membrane depolarization from the rat adrenal medulla.
    Lim DY; Lee YG; Kim IH
    Arch Pharm Res; 2002 Aug; 25(4):511-21. PubMed ID: 12214865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-talk between M2 muscarinic and D1 dopamine receptors in the cat adrenal medulla.
    Albillos A; Abad F; García AG
    Biochem Biophys Res Commun; 1992 Mar; 183(3):1019-24. PubMed ID: 1348929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signal transduction interactions between CB1 cannabinoid and dopamine receptors in the rat and monkey striatum.
    Meschler JP; Howlett AC
    Neuropharmacology; 2001 Jun; 40(7):918-26. PubMed ID: 11378162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opposing roles of dopamine D1 and D2 receptors in nigral gamma-[3H]aminobutyric acid release?
    Starr M
    J Neurochem; 1987 Oct; 49(4):1042-9. PubMed ID: 2957468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine induces a biphasic modulation of hypothalamic ANF neurons: a ligand concentration-dependent effect involving D5 and D2 receptor interaction.
    Lee D; Huang W; Lim AT
    Mol Psychiatry; 2000 Jan; 5(1):39-48. PubMed ID: 10673767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of D1 and D2 dopamine receptors increases the activity of the somatostatin receptor-effector system in the rat frontoparietal cortex.
    Izquierdo-Claros RM; del Boyano-Adánez M; Arilla-Ferreiro E
    J Neurosci Res; 2000 Oct; 62(1):91-8. PubMed ID: 11002291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prostaglandin E receptors in bovine adrenal medulla are coupled to adenylate cyclase via Gi and to phosphoinositide metabolism in a pertussis toxin-insensitive manner.
    Negishi M; Ito S; Hayaishi O
    J Biol Chem; 1989 Mar; 264(7):3916-23. PubMed ID: 2537296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dopamine receptors modulate cytotoxicity of natural killer cells via cAMP-PKA-CREB signaling pathway.
    Zhao W; Huang Y; Liu Z; Cao BB; Peng YP; Qiu YH
    PLoS One; 2013; 8(6):e65860. PubMed ID: 23799052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of dopamine receptor subtypes in mediating modulation of T lymphocyte function.
    Huang Y; Qiu AW; Peng YP; Liu Y; Huang HW; Qiu YH
    Neuro Endocrinol Lett; 2010; 31(6):782-91. PubMed ID: 21196914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dopamine receptor activation in bovine pinealocyte via a cAMP-dependent transcription pathway.
    Santanavanich C; Ebadi M; Govitrapong P
    J Pineal Res; 2005 Apr; 38(3):170-5. PubMed ID: 15725338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dopaminergic control of angiotensin II-induced vasopressin secretion in vitro.
    Rossi NF
    Am J Physiol; 1998 Oct; 275(4):E687-93. PubMed ID: 9755089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guanine nucleotide binding proteins and the regulation of cyclic AMP synthesis in NS20Y neuroblastoma cells: role of D1 dopamine and muscarinic receptors.
    Lovenberg TW; Nichols DE; Nestler EJ; Roth RH; Mailman RB
    Brain Res; 1991 Aug; 556(1):101-7. PubMed ID: 1682005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The alleged dopamine D1 receptor agonist SKF 83959 is a dopamine D1 receptor antagonist in primate cells and interacts with other receptors.
    Andringa G; Drukarch B; Leysen JE; Cools AR; Stoof JC
    Eur J Pharmacol; 1999 Jan; 364(1):33-41. PubMed ID: 9920182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forskolin potentiates the stimulation of rat striatal adenylate cyclase mediated by D-1 dopamine receptors, guanine nucleotides, and sodium fluoride.
    Battaglia G; Norman AB; Hess EJ; Creese I
    J Neurochem; 1986 Apr; 46(4):1180-5. PubMed ID: 3005508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.