These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 852303)

  • 1. Specificity of sodium-dependent electrogenic sugar transport in amphibian kidney proximal tubule.
    Hoshi T; Saito Y
    Contrib Nephrol; 1977; 6():52-60. PubMed ID: 852303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specificity and sodium dependence of the active sugar transport in the proximal convolution of the rat kidney.
    Ullrich KJ; Rumrich G; Klöss S
    Pflugers Arch; 1974; 351(1):35-48. PubMed ID: 4472834
    [No Abstract]   [Full Text] [Related]  

  • 3. Sugar interaction with the antiluminal surface of the proximal tubule in dog kidney.
    Silverman M
    Am J Physiol; 1977 May; 232(5):F455-60. PubMed ID: 871167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High affinity phlorizin receptor sites and their relation to the glucose transport mechanism in the proximal tubule of dog kidney.
    Silverman M; Black J
    Biochim Biophys Acta; 1975 Jun; 394(1):10-30. PubMed ID: 1095065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intestinal sugar transport: ionic activation and chemical specificity.
    Bihler I
    Biochim Biophys Acta; 1969 Jun; 183(1):169-81. PubMed ID: 5792864
    [No Abstract]   [Full Text] [Related]  

  • 6. Structural requirements for active intestinal sugar transport. The involvement of hydrogen bonds at C-1 and C-6 of the sugar.
    Barnett JE; Jarvis WT; Munday KA
    Biochem J; 1968 Aug; 109(1):61-7. PubMed ID: 5669849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of dietary-restricted rat intestine for active transport studies.
    Neale RJ; Wiseman G
    J Physiol; 1969 Nov; 205(1):159-78. PubMed ID: 5347715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of D-glucose on oxygen consumption of renal proximal tubules of the Triturus.
    Kuramochi G
    Jpn J Physiol; 1986; 36(2):287-93. PubMed ID: 2426496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective permeability of the small intestine for fructose.
    Guy MJ; Deren JJ
    Am J Physiol; 1971 Oct; 221(4):1051-6. PubMed ID: 5111247
    [No Abstract]   [Full Text] [Related]  

  • 10. Sugar uptake into brush border vesicles from normal human kidney.
    Turner RJ; Silverman M
    Proc Natl Acad Sci U S A; 1977 Jul; 74(7):2825-9. PubMed ID: 142986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomics analysis of Bifidobacterium longum NCC2705 growing on glucose, fructose, mannose, xylose, ribose, and galactose.
    Liu D; Wang S; Xu B; Guo Y; Zhao J; Liu W; Sun Z; Shao C; Wei X; Jiang Z; Wang X; Liu F; Wang J; Huang L; Hu D; He X; Riedel CU; Yuan J
    Proteomics; 2011 Jul; 11(13):2628-38. PubMed ID: 21630463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between sugar structure and competition for the sugar transport system in Bakers' yeast.
    Cirillo VP
    J Bacteriol; 1968 Feb; 95(2):603-11. PubMed ID: 5640385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absorption of sodium, chloride, water, and simple sugars in rat small intestine.
    Levinson RA; Schedl HP
    Am J Physiol; 1966 Oct; 211(4):939-42. PubMed ID: 5926581
    [No Abstract]   [Full Text] [Related]  

  • 14. Uptake of monosaccharides by guinea-pig cerebral-cortex slices.
    Joanny P; Corriol J; Hillman H
    Biochem J; 1969 Apr; 112(3):367-71. PubMed ID: 5801307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium-dependent glucose transport by cultured proximal tubule cells.
    Alavi N; Spangler RA; Jung CY
    Biochim Biophys Acta; 1987 May; 899(1):9-16. PubMed ID: 3567195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization and transport of glucose in Olea Europaea cell suspensions.
    Oliveira J; Tavares RM; Gerós H
    Plant Cell Physiol; 2002 Dec; 43(12):1510-7. PubMed ID: 12514248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specificity of monosaccharide transport in dog kidney.
    Silverman M; Aganon MA; Chinard FP
    Am J Physiol; 1970 Mar; 218(3):743-50. PubMed ID: 4905483
    [No Abstract]   [Full Text] [Related]  

  • 18. Development of sugar transport in the chick intestine.
    Bogner PH
    Biol Neonat; 1965-1966; 9(1):1-9. PubMed ID: 5872075
    [No Abstract]   [Full Text] [Related]  

  • 19. [Penetration of monosaccharides in sections of guinea pig cortex].
    Joanny P; Corriol J; Kleinzeller A
    C R Seances Soc Biol Fil; 1967; 161(10):2002-8. PubMed ID: 4234188
    [No Abstract]   [Full Text] [Related]  

  • 20. Mobility of the free and of the loaded monosaccharide carrier in Saccharomyces cerevisiae.
    Kotyk A
    Biochim Biophys Acta; 1967 Feb; 135(1):112-9. PubMed ID: 6031495
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.