BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 8523203)

  • 21. Can mechanical ventilation strategies reduce chronic lung disease?
    Donn SM; Sinha SK
    Semin Neonatol; 2003 Dec; 8(6):441-8. PubMed ID: 15001116
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Care of the newborn infant with respiratory distress syndrome using continuous negative pressure. 5 years' experience].
    Ronconi GF; Mercurella A; Fantuz E; Pesenti P; Sassolino S
    Pediatr Med Chir; 1986; 8(3):365-8. PubMed ID: 3097624
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oxygen cost of breathing in postoperative patients. Pressure support ventilation vs continuous positive airway pressure.
    Viale JP; Annat GJ; Bouffard YM; Delafosse BX; Bertrand OM; Motin JP
    Chest; 1988 Mar; 93(3):506-9. PubMed ID: 3125013
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multicenter controlled clinical trial of high-frequency jet ventilation in preterm infants with uncomplicated respiratory distress syndrome.
    Keszler M; Modanlou HD; Brudno DS; Clark FI; Cohen RS; Ryan RM; Kaneta MK; Davis JM
    Pediatrics; 1997 Oct; 100(4):593-9. PubMed ID: 9310511
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Oxygen therapy of newborn infants].
    Santucci S; Pastori P; Calò S
    Minerva Pediatr; 1979 Aug; 31(15):1127-31. PubMed ID: 384199
    [No Abstract]   [Full Text] [Related]  

  • 26. The Effects of helium/oxygen mixture (heliox) before and after extubation in long-term mechanically ventilated very low birth weight infants.
    Migliori C; Gancia P; Garzoli E; Spinoni V; Chirico G
    Pediatrics; 2009 Jun; 123(6):1524-8. PubMed ID: 19482763
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distending pressure in infants with respiratory distress syndrome.
    Baum JD; Roberton NR
    Arch Dis Child; 1974 Oct; 49(10):771-81. PubMed ID: 4611351
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Observation of spontaneous respiratory interaction with artificial ventilation.
    Greenough A; Greenall F
    Arch Dis Child; 1988 Feb; 63(2):168-71. PubMed ID: 3279924
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Manipulation of ventilator settings to prevent active expiration against positive pressure inflation.
    Field D; Milner AD; Hopkin IE
    Arch Dis Child; 1985 Nov; 60(11):1036-40. PubMed ID: 3935053
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Continuous negative chest wall pressure in hyaline membrane disease: one year experience.
    Chernick V; Vidyasagar D
    Pediatrics; 1972 May; 49(5):753-60. PubMed ID: 4556278
    [No Abstract]   [Full Text] [Related]  

  • 31. Pulmonary oxygen consumption: a hypothesis to explain the increase in oxygen consumption of low birth weight infants with lung disease.
    Schulze A; Abubakar K; Gill G; Way RC; Sinclair JC
    Intensive Care Med; 2001 Oct; 27(10):1636-42. PubMed ID: 11685305
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bi-level positive airway pressure ventilation reduces the oxygen cost of breathing in long-standing post-polio patients on invasive home mechanical ventilation.
    Barle H; Söderberg P; Haegerstrand C; Markström A
    Acta Anaesthesiol Scand; 2005 Feb; 49(2):197-202. PubMed ID: 15715621
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Early surfactant administration with brief ventilation vs selective surfactant and continued mechanical ventilation for preterm infants with or at risk for respiratory distress syndrome.
    Stevens TP; Blennow M; Soll RF
    Cochrane Database Syst Rev; 2004; (3):CD003063. PubMed ID: 15266470
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of airway occlusion after oxygen breathing on the lungs of newborn infants. Radiologic demonstration in the experimental animal.
    Fletcher BD; Avery ME
    Radiology; 1973 Dec; 109(3):655-7. PubMed ID: 4203938
    [No Abstract]   [Full Text] [Related]  

  • 35. Very early surfactant without mandatory ventilation in premature infants treated with early continuous positive airway pressure: a randomized, controlled trial.
    Rojas MA; Lozano JM; Rojas MX; Laughon M; Bose CL; Rondon MA; Charry L; Bastidas JA; Perez LA; Rojas C; Ovalle O; Celis LA; Garcia-Harker J; Jaramillo ML;
    Pediatrics; 2009 Jan; 123(1):137-42. PubMed ID: 19117872
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A clinical score for predicting the level of respiratory care in infants with respiratory distress syndrome.
    Peckham GJ; Schulman J; Pereira GR; Shutack JG
    Clin Pediatr (Phila); 1979 Dec; 18(12):716-20. PubMed ID: 41662
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluctuations of arterial blood pressure decrease with mechanical ventilation in premature infants with respiratory distress syndrome.
    Goldstein RF; Brazy JE
    J Perinatol; 1990 Sep; 10(3):267-71. PubMed ID: 2213267
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxygen plus pressure plus time: the etiology of bronchopulmonary dysplasia.
    Philip AG
    Pediatrics; 1975 Jan; 55(1):44-50. PubMed ID: 1089241
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-frequency oscillation and chronic lung disease in very low birth weight infants.
    Shenai JP
    Pediatrics; 2001 Jul; 108(1):212-3. PubMed ID: 11452961
    [No Abstract]   [Full Text] [Related]  

  • 40. Treatment of the idiopathic respiratory-distress syndrome with continuous positive airway pressure.
    Gregory GA; Kitterman JA; Phibbs RH; Tooley WH; Hamilton WK
    N Engl J Med; 1971 Jun; 284(24):1333-40. PubMed ID: 4930602
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.