These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 8523430)
1. Adaptation to chronic hypoxia alters cardiac metabolic response to beta stimulation: novel face of phosphocreatine overshoot phenomenon. Novel-Chaté V; Aussedat J; Saks VA; Rossi A J Mol Cell Cardiol; 1995 Aug; 27(8):1679-87. PubMed ID: 8523430 [TBL] [Abstract][Full Text] [Related]
2. Preserved high energy phosphate metabolic reserve in globally "stunned" hearts despite reduction of basal ATP content and contractility. Ambrosio G; Jacobus WE; Bergman CA; Weisman HF; Becker LC J Mol Cell Cardiol; 1987 Oct; 19(10):953-64. PubMed ID: 3437454 [TBL] [Abstract][Full Text] [Related]
3. High-energy phosphate responses to tachycardia and inotropic stimulation in left ventricular hypertrophy. Bache RJ; Zhang J; Path G; Merkle H; Hendrich K; From AH; Ugurbil K Am J Physiol; 1994 May; 266(5 Pt 2):H1959-70. PubMed ID: 8203595 [TBL] [Abstract][Full Text] [Related]
4. Energy metabolism response to calcium activation in isolated rat hearts during development and regression of T3-induced hypertrophy. Lortet S; Heckmann M; Ray A; Rossi A; Aussedat J; Grably S; Zimmer HG Mol Cell Biochem; 1995 Oct; 151(2):99-106. PubMed ID: 8569765 [TBL] [Abstract][Full Text] [Related]
5. Direct evidence for a role of intramitochondrial Ca2+ in the regulation of oxidative phosphorylation in the stimulated rat heart. Studies using 31P n.m.r. and ruthenium red. Unitt JF; McCormack JG; Reid D; MacLachlan LK; England PJ Biochem J; 1989 Aug; 262(1):293-301. PubMed ID: 2479373 [TBL] [Abstract][Full Text] [Related]
6. Cyclical changes in high-energy phosphates during the cardiac cycle by pacing-Gated 31P nuclear magnetic resonance. Honda H; Tanaka K; Akita N; Haneda T Circ J; 2002 Jan; 66(1):80-6. PubMed ID: 11999671 [TBL] [Abstract][Full Text] [Related]
7. 31P magnetic resonance spectroscopy of the Sherpa heart: a phosphocreatine/adenosine triphosphate signature of metabolic defense against hypobaric hypoxia. Hochachka PW; Clark CM; Holden JE; Stanley C; Ugurbil K; Menon RS Proc Natl Acad Sci U S A; 1996 Feb; 93(3):1215-20. PubMed ID: 8577743 [TBL] [Abstract][Full Text] [Related]
8. Effects of prolonged application of isoprenaline on intracellular free magnesium concentration in isolated heart of rat. Nishimura H; Matsubara T; Ikoma Y; Nakayama S; Sakamoto N Br J Pharmacol; 1993 Jun; 109(2):443-8. PubMed ID: 8358545 [TBL] [Abstract][Full Text] [Related]
9. Impairment of cardiac function and energetics in experimental renal failure. Raine AE; Seymour AM; Roberts AF; Radda GK; Ledingham JG J Clin Invest; 1993 Dec; 92(6):2934-40. PubMed ID: 8254048 [TBL] [Abstract][Full Text] [Related]
10. Interaction of hypoxia and aging in the heart: analysis of high energy phosphate content. Bak MI; Wei JY; Ingwall JS J Mol Cell Cardiol; 1998 Mar; 30(3):661-72. PubMed ID: 9515041 [TBL] [Abstract][Full Text] [Related]
11. Sustained function of normoxic hearts depleted in ATP and phosphocreatine: a 31P-NMR study. Hoerter JA; Lauer C; Vassort G; Guéron M Am J Physiol; 1988 Aug; 255(2 Pt 1):C192-201. PubMed ID: 3407764 [TBL] [Abstract][Full Text] [Related]
12. Energy metabolism and mechanical recovery after cardioplegia in moderately hypertrophied rats. Smolenski RT; Jayakumar J; Seymour AM; Yacoub MH Mol Cell Biochem; 1998 Mar; 180(1-2):137-43. PubMed ID: 9546640 [TBL] [Abstract][Full Text] [Related]
13. Verapamil attenuates ATP depletion during hypoxia: 31P NMR studies of the isolated rat heart. Neubauer S; Ingwall JS J Mol Cell Cardiol; 1989 Nov; 21(11):1163-78. PubMed ID: 2607547 [TBL] [Abstract][Full Text] [Related]
14. Biochemical mechanisms of acute contractile failure in the hypoxic rat heart. Matthews PM; Taylor DJ; Radda GK Cardiovasc Res; 1986 Jan; 20(1):13-9. PubMed ID: 3708637 [TBL] [Abstract][Full Text] [Related]
16. Effect of age on phosphorylated compounds and mechanical activity of isolated rat heart: a 31P-NMR study. Finelli C; Aussedat J; Ray A; Lortet S; Lavanchy N; Guarnieri C; Caldarera CM; Rossi A Cardiovasc Res; 1993 Nov; 27(11):1978-82. PubMed ID: 8287406 [TBL] [Abstract][Full Text] [Related]
17. Glycolysis is necessary to preserve myocardial Ca2+ homeostasis during beta-adrenergic stimulation. Nakamura K; Kusuoka H; Ambrosio G; Becker LC Am J Physiol; 1993 Mar; 264(3 Pt 2):H670-8. PubMed ID: 8384419 [TBL] [Abstract][Full Text] [Related]