These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 8524048)
1. An early origin of plastids within the cyanobacterial divergence is suggested by evolutionary trees based on complete 16S rRNA sequences. Nelissen B; Van de Peer Y; Wilmotte A; De Wachter R Mol Biol Evol; 1995 Nov; 12(6):1166-73. PubMed ID: 8524048 [TBL] [Abstract][Full Text] [Related]
2. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. Turner S; Pryer KM; Miao VP; Palmer JD J Eukaryot Microbiol; 1999; 46(4):327-38. PubMed ID: 10461381 [TBL] [Abstract][Full Text] [Related]
3. The plastid ancestor originated among one of the major cyanobacterial lineages. Ochoa de Alda JA; Esteban R; Diago ML; Houmard J Nat Commun; 2014 Sep; 5():4937. PubMed ID: 25222494 [TBL] [Abstract][Full Text] [Related]
4. Phylogenetic analysis of tufA sequences indicates a cyanobacterial origin of all plastids. Delwiche CF; Kuhsel M; Palmer JD Mol Phylogenet Evol; 1995 Jun; 4(2):110-28. PubMed ID: 7663757 [TBL] [Abstract][Full Text] [Related]
5. Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor. Deusch O; Landan G; Roettger M; Gruenheit N; Kowallik KV; Allen JF; Martin W; Dagan T Mol Biol Evol; 2008 Apr; 25(4):748-61. PubMed ID: 18222943 [TBL] [Abstract][Full Text] [Related]
6. Analyses of ribosomal RNA sequences from glaucocystophyte cyanelles provide new insights into the evolutionary relationships of plastids. Helmchen TA; Bhattacharya D; Melkonian M J Mol Evol; 1995 Aug; 41(2):203-10. PubMed ID: 7666450 [TBL] [Abstract][Full Text] [Related]
7. Phylogenetic relationships of nonaxenic filamentous cyanobacterial strains based on 16S rRNA sequence analysis. Nelissen B; De Baere R; Wilmotte A; De Wachter R J Mol Evol; 1996 Feb; 42(2):194-200. PubMed ID: 8919871 [TBL] [Abstract][Full Text] [Related]
8. The origin of red algae and cryptomonad nucleomorphs: A comparative phylogeny based on small and large subunit rRNA sequences of Palmaria palmata, Gracilaria verrucosa, and the Guillardia theta nucleomorph. Van der Auwera G; Hofmann CJ; De Rijk P; De Wachter R Mol Phylogenet Evol; 1998 Dec; 10(3):333-42. PubMed ID: 10051386 [TBL] [Abstract][Full Text] [Related]
9. Evolutionary affiliation of the marine nitrogen-fixing cyanobacterium Trichodesmium sp. strain NIBB 1067, derived by 16S ribosomal RNA sequence analysis. Wilmotte A; Neefs JM; De Wachter R Microbiology (Reading); 1994 Aug; 140 ( Pt 8)():2159-64. PubMed ID: 7522848 [TBL] [Abstract][Full Text] [Related]
10. rDNA analyses of planktonic heterocystous cyanobacteria, including members of the genera Anabaenopsis and Cyanospira. Iteman I; Rippka R; Tandeau de Marsac N; Herdman M Microbiology (Reading); 2002 Feb; 148(Pt 2):481-496. PubMed ID: 11832512 [TBL] [Abstract][Full Text] [Related]
13. An Expanded Ribosomal Phylogeny of Cyanobacteria Supports a Deep Placement of Plastids. Moore KR; Magnabosco C; Momper L; Gold DA; Bosak T; Fournier GP Front Microbiol; 2019; 10():1612. PubMed ID: 31354692 [TBL] [Abstract][Full Text] [Related]
14. Epilithic cyanobacterial communities of a marine tropical beach rock (Heron Island, Great Barrier Reef): diversity and diazotrophy. Díez B; Bauer K; Bergman B Appl Environ Microbiol; 2007 Jun; 73(11):3656-68. PubMed ID: 17416688 [TBL] [Abstract][Full Text] [Related]
15. Complex evolutionary patterns of tRNA Leu(UAA) group I introns in the cyanobacterial radiation [corrected]. Rudi K; Jakobsen KS J Bacteriol; 1999 Jun; 181(11):3445-51. PubMed ID: 10348857 [TBL] [Abstract][Full Text] [Related]
16. Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. Robertson BR; Tezuka N; Watanabe MM Int J Syst Evol Microbiol; 2001 May; 51(Pt 3):861-871. PubMed ID: 11411708 [TBL] [Abstract][Full Text] [Related]
17. Plastid genomes of the Rhodophyta and Chromophyta constitute a distinct lineage which differs from that of the Chlorophyta and have a composite phylogenetic origin, perhaps like that of the Euglenophyta. Markowicz Y; Loiseaux-de Goër S Curr Genet; 1991 Nov; 20(5):427-30. PubMed ID: 1807834 [TBL] [Abstract][Full Text] [Related]
18. Molecular evidence for the origin of plastids from a cyanobacterium-like ancestor. Douglas SE; Turner S J Mol Evol; 1991 Sep; 33(3):267-73. PubMed ID: 1757997 [TBL] [Abstract][Full Text] [Related]
19. Repeat-type distribution in trnL intron does not correspond with species phylogeny: comparison of the genetic markers 16S rRNA and trnL intron in heterocystous cyanobacteria. Oksanen I; Lohtander K; Sivonen K; Rikkinen J Int J Syst Evol Microbiol; 2004 May; 54(Pt 3):765-772. PubMed ID: 15143022 [TBL] [Abstract][Full Text] [Related]
20. The phylogenetic relationships of cyanobacteria inferred from 16S rRNA, gyrB, rpoC1 and rpoD1 gene sequences. Seo PS; Yokota A J Gen Appl Microbiol; 2003 Jun; 49(3):191-203. PubMed ID: 12949700 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]