BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 8524149)

  • 21. Intermolecular electron transfer from substrate-reduced methylamine dehydrogenase to amicyanin is linked to proton transfer.
    Bishop GR; Davidson VL
    Biochemistry; 1995 Sep; 34(37):12082-6. PubMed ID: 7547947
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enzymatic and electron transfer activities in crystalline protein complexes.
    Merli A; Brodersen DE; Morini B; Chen Z; Durley RC; Mathews FS; Davidson VL; Rossi GL
    J Biol Chem; 1996 Apr; 271(16):9177-80. PubMed ID: 8621571
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence for substrate activation of electron transfer from methylamine dehydrogenase to amicyanin.
    Davidson VL; Sun D
    J Am Chem Soc; 2003 Mar; 125(11):3224-5. PubMed ID: 12630872
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quinoprotein-catalysed reactions.
    Anthony C
    Biochem J; 1996 Dec; 320 ( Pt 3)(Pt 3):697-711. PubMed ID: 9003352
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enzymatic H-transfer requires vibration-driven extreme tunneling.
    Basran J; Sutcliffe MJ; Scrutton NS
    Biochemistry; 1999 Mar; 38(10):3218-22. PubMed ID: 10074378
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biochemistry. Remote enzyme microsurgery.
    Bollinger JM; Matthews ML
    Science; 2010 Mar; 327(5971):1337-8. PubMed ID: 20223975
    [No Abstract]   [Full Text] [Related]  

  • 27. Genetics of bacterial quinoproteins.
    Lidstrom ME
    Methods Enzymol; 1995; 258():217-27. PubMed ID: 8524152
    [No Abstract]   [Full Text] [Related]  

  • 28. Model studies of cofactor tryptophan tryptophylquinone.
    Itoh S; Ohshiro Y
    Methods Enzymol; 1995; 258():164-76. PubMed ID: 8524148
    [No Abstract]   [Full Text] [Related]  

  • 29. Active-site residues are critical for the folding and stability of methylamine dehydrogenase.
    Sun D; Jones LH; Mathews FS; Davidson VL
    Protein Eng; 2001 Sep; 14(9):675-81. PubMed ID: 11707614
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of reaction of allylamine with the quinoprotein methylamine dehydrogenase.
    Davidson VL; Graichen ME; Jones LH
    Biochem J; 1995 Jun; 308 ( Pt 2)(Pt 2):487-92. PubMed ID: 7772031
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrostatic environment of the tryptophylquinone cofactor in methylamine dehydrogenase: evidence from resonance Raman spectroscopy of model compounds.
    Moënne-Loccoz P; Nakamura N; Itoh S; Fukuzumi S; Gorren AC; Duine JA; Sanders-Loehr J
    Biochemistry; 1996 Apr; 35(15):4713-20. PubMed ID: 8664261
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MauG, a novel diheme protein required for tryptophan tryptophylquinone biogenesis.
    Wang Y; Graichen ME; Liu A; Pearson AR; Wilmot CM; Davidson VL
    Biochemistry; 2003 Jun; 42(24):7318-25. PubMed ID: 12809487
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure of an electron transfer complex: methylamine dehydrogenase, amicyanin, and cytochrome c551i.
    Chen L; Durley RC; Mathews FS; Davidson VL
    Science; 1994 Apr; 264(5155):86-90. PubMed ID: 8140419
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of monovalent cations on the ultraviolet-visible spectrum of tryptophan tryptophylquinone-containing methylamine dehydrogenase from bacterium W3A1.
    Kuusk V; McIntire WS
    J Biol Chem; 1994 Oct; 269(42):26136-43. PubMed ID: 7929326
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Redox Properties of a Cysteine Tryptophylquinone-Dependent Glycine Oxidase Are Distinct from Those of Tryptophylquinone-Dependent Dehydrogenases.
    Ma Z; Davidson VL
    Biochemistry; 2019 Apr; 58(17):2243-2249. PubMed ID: 30945853
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deuterium kinetic isotope effect and stopped-flow kinetic studies of the quinoprotein methylamine dehydrogenase.
    Brooks HB; Jones LH; Davidson VL
    Biochemistry; 1993 Mar; 32(10):2725-9. PubMed ID: 8448129
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isotope labeling studies reveal the order of oxygen incorporation into the tryptophan tryptophylquinone cofactor of methylamine dehydrogenase.
    Pearson AR; Marimanikkuppam S; Li X; Davidson VL; Wilmot CM
    J Am Chem Soc; 2006 Sep; 128(38):12416-7. PubMed ID: 16984182
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Importance of barrier shape in enzyme-catalyzed reactions. Vibrationally assisted hydrogen tunneling in tryptophan tryptophylquinone-dependent amine dehydrogenases.
    Basran J; Patel S; Sutcliffe MJ; Scrutton NS
    J Biol Chem; 2001 Mar; 276(9):6234-42. PubMed ID: 11087744
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystallographic and spectroscopic studies of native, aminoquinol, and monovalent cation-bound forms of methylamine dehydrogenase from Methylobacterium extorquens AM1.
    Labesse G; Ferrari D; Chen ZW; Rossi GL; Kuusk V; McIntire WS; Mathews FS
    J Biol Chem; 1998 Oct; 273(40):25703-12. PubMed ID: 9748238
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reactions of benzylamines with methylamine dehydrogenase. Evidence for a carbanionic reaction intermediate and reaction mechanism similar to eukaryotic quinoproteins.
    Davidson VL; Jones LH; Graichen ME
    Biochemistry; 1992 Apr; 31(13):3385-90. PubMed ID: 1554720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.