These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 8524264)
1. Cotranscriptional splicing of a group I intron is facilitated by the Cbp2 protein. Lewin AS; Thomas J; Tirupati HK Mol Cell Biol; 1995 Dec; 15(12):6971-8. PubMed ID: 8524264 [TBL] [Abstract][Full Text] [Related]
2. The Cbp2 protein stimulates the splicing of the omega intron of yeast mitochondria. Shaw LC; Lewin AS Nucleic Acids Res; 1997 Apr; 25(8):1597-604. PubMed ID: 9092668 [TBL] [Abstract][Full Text] [Related]
3. Efficient protein-facilitated splicing of the yeast mitochondrial bI5 intron. Weeks KM; Cech TR Biochemistry; 1995 Jun; 34(23):7728-38. PubMed ID: 7540041 [TBL] [Abstract][Full Text] [Related]
4. An RNA binding motif in the Cbp2 protein required for protein-stimulated RNA catalysis. Tirupati HK; Shaw LC; Lewin AS J Biol Chem; 1999 Oct; 274(43):30393-401. PubMed ID: 10521416 [TBL] [Abstract][Full Text] [Related]
5. Binding of the CBP2 protein to a yeast mitochondrial group I intron requires the catalytic core of the RNA. Gampel A; Cech TR Genes Dev; 1991 Oct; 5(10):1870-80. PubMed ID: 1916266 [TBL] [Abstract][Full Text] [Related]
6. Protein facilitation of group I intron splicing by assembly of the catalytic core and the 5' splice site domain. Weeks KM; Cech TR Cell; 1995 Jul; 82(2):221-30. PubMed ID: 7628013 [TBL] [Abstract][Full Text] [Related]
7. The Cbp2 protein suppresses splice site mutations in a group I intron. Shaw LC; Thomas J; Lewin AS Nucleic Acids Res; 1996 Sep; 24(17):3415-23. PubMed ID: 8811097 [TBL] [Abstract][Full Text] [Related]
8. CBP2 protein promotes in vitro excision of a yeast mitochondrial group I intron. Gampel A; Nishikimi M; Tzagoloff A Mol Cell Biol; 1989 Dec; 9(12):5424-33. PubMed ID: 2685564 [TBL] [Abstract][Full Text] [Related]
9. The novel function of the Saccharomyces cerevisiae CBP2 gene as a splicing factor essential to excision of the Saccharomyces douglasii LSU intron in vivo. Tian GL; Li GY; Slonimski PP; Lazowska J Mol Gen Genet; 1998 Apr; 258(1-2):60-8. PubMed ID: 9613573 [TBL] [Abstract][Full Text] [Related]
10. Protein-dependent transition states for ribonucleoprotein assembly. Webb AE; Rose MA; Westhof E; Weeks KM J Mol Biol; 2001 Jun; 309(5):1087-100. PubMed ID: 11399081 [TBL] [Abstract][Full Text] [Related]
11. The DIVa maturase binding site in the yeast group II intron aI2 is essential for intron homing but not for in vivo splicing. Huang HR; Chao MY; Armstrong B; Wang Y; Lambowitz AM; Perlman PS Mol Cell Biol; 2003 Dec; 23(23):8809-19. PubMed ID: 14612420 [TBL] [Abstract][Full Text] [Related]
12. Assembly of a ribonucleoprotein catalyst by tertiary structure capture. Weeks KM; Cech TR Science; 1996 Jan; 271(5247):345-8. PubMed ID: 8553068 [TBL] [Abstract][Full Text] [Related]
13. Transcription in vitro with Saccharomyces cerevisiae mitochondrial RNA-polymerase. Mangus DA; Jaehning JA Methods Enzymol; 1996; 264():57-66. PubMed ID: 8965728 [No Abstract] [Full Text] [Related]
14. Length changes in the joining segment between domains 5 and 6 of a group II intron inhibit self-splicing and alter 3' splice site selection. Boulanger SC; Faix PH; Yang H; Zhuo J; Franzen JS; Peebles CL; Perlman PS Mol Cell Biol; 1996 Oct; 16(10):5896-904. PubMed ID: 8816503 [TBL] [Abstract][Full Text] [Related]
15. The CBP2 gene from Saccharomyces douglasii is a functional homologue of the Saccharomyces cerevisiae gene and is essential for respiratory growth in the presence of a wild-type (intron-containing) mitochondrial genome. Li GY; Tian GL; Slonimski PP; Herbert CJ Mol Gen Genet; 1996 Feb; 250(3):316-22. PubMed ID: 8602146 [TBL] [Abstract][Full Text] [Related]
16. The NAM8 gene in Saccharomyces cerevisiae encodes a protein with putative RNA binding motifs and acts as a suppressor of mitochondrial splicing deficiencies when overexpressed. Ekwall K; Kermorgant M; Dujardin G; Groudinsky O; Slonimski PP Mol Gen Genet; 1992 May; 233(1-2):136-44. PubMed ID: 1603056 [TBL] [Abstract][Full Text] [Related]
17. A DEAD-box protein alone promotes group II intron splicing and reverse splicing by acting as an RNA chaperone. Mohr S; Matsuura M; Perlman PS; Lambowitz AM Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3569-74. PubMed ID: 16505350 [TBL] [Abstract][Full Text] [Related]
18. Homologous maturase-like proteins are encoded within the group I introns in different mitochondrial genes specifying Yarrowia lipolytica cytochrome c oxidase subunit 3 and Saccharomyces cerevisiae apocytochrome b. Matsuoka M; Matsubara M; Kakehi M; Imanaka T Curr Genet; 1994; 26(5-6):377-81. PubMed ID: 7533056 [TBL] [Abstract][Full Text] [Related]
19. Mutation of the conserved first nucleotide of a group II intron from yeast mitochondrial DNA reduces the rate but allows accurate splicing. Peebles CL; Belcher SM; Zhang M; Dietrich RC; Perlman PS J Biol Chem; 1993 Jun; 268(16):11929-38. PubMed ID: 8389367 [TBL] [Abstract][Full Text] [Related]
20. Splicing of yeast aI5beta group I intron requires SUV3 to recycle MRS1 via mitochondrial degradosome-promoted decay of excised intron ribonucleoprotein (RNP). Turk EM; Caprara MG J Biol Chem; 2010 Mar; 285(12):8585-94. PubMed ID: 20064926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]