These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 8524264)
21. Protein-induced folding of a group I intron in cytochrome b pre-mRNA. Shaw LC; Lewin AS J Biol Chem; 1995 Sep; 270(37):21552-62. PubMed ID: 7665568 [TBL] [Abstract][Full Text] [Related]
22. Mitochondrial protein synthesis is not required for efficient excision of intron aI5 beta from COX1 pre-mRNA in Saccharomyces cerevisiae. Johnson CH; McEwen JE Mol Gen Genet; 1997 Sep; 256(1):88-91. PubMed ID: 9341683 [TBL] [Abstract][Full Text] [Related]
23. The bI4 group I intron binds directly to both its protein splicing partners, a tRNA synthetase and maturase, to facilitate RNA splicing activity. Rho SB; Martinis SA RNA; 2000 Dec; 6(12):1882-94. PubMed ID: 11142386 [TBL] [Abstract][Full Text] [Related]
24. A collapsed state functions to self-chaperone RNA folding into a native ribonucleoprotein complex. Webb AE; Weeks KM Nat Struct Biol; 2001 Feb; 8(2):135-40. PubMed ID: 11175902 [TBL] [Abstract][Full Text] [Related]
25. Uncoupling yeast intron recognition from transcription with recursive splicing. Lopez PJ; Séraphin B EMBO Rep; 2000 Oct; 1(4):334-9. PubMed ID: 11269499 [TBL] [Abstract][Full Text] [Related]
26. Unwinding by local strand separation is critical for the function of DEAD-box proteins as RNA chaperones. Del Campo M; Mohr S; Jiang Y; Jia H; Jankowsky E; Lambowitz AM J Mol Biol; 2009 Jun; 389(4):674-93. PubMed ID: 19393667 [TBL] [Abstract][Full Text] [Related]
27. Reverse transcriptase and reverse splicing activities encoded by the mobile group II intron cobI1 of fission yeast mitochondrial DNA. Schäfer B; Gan L; Perlman PS J Mol Biol; 2003 May; 329(2):191-206. PubMed ID: 12758069 [TBL] [Abstract][Full Text] [Related]
28. Splicing of the meiosis-specific HOP2 transcript utilizes a unique 5' splice site. Leu JY; Roeder GS Mol Cell Biol; 1999 Dec; 19(12):7933-43. PubMed ID: 10567519 [TBL] [Abstract][Full Text] [Related]
29. Genome-wide analysis of pre-mRNA splicing: intron features govern the requirement for the second-step factor, Prp17 in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Sapra AK; Arava Y; Khandelia P; Vijayraghavan U J Biol Chem; 2004 Dec; 279(50):52437-46. PubMed ID: 15452114 [TBL] [Abstract][Full Text] [Related]
30. Characterization of products derived from self-splicing of intron aI5 alpha which is located in the mitochondrial COX I gene of Saccharomyces cerevisiae. Winter AJ; van der Horst G; Tabak HF Nucleic Acids Res; 1988 May; 16(9):3845-61. PubMed ID: 3287336 [TBL] [Abstract][Full Text] [Related]
31. The phylogenetically predicted base-pairing interaction between alpha and alpha' is required for group II splicing in vitro. Harris-Kerr CL; Zhang M; Peebles CL Proc Natl Acad Sci U S A; 1993 Nov; 90(22):10658-62. PubMed ID: 7504276 [TBL] [Abstract][Full Text] [Related]
32. The DExH box protein Suv3p is a component of a yeast mitochondrial 3'-to-5' exoribonuclease that suppresses group I intron toxicity. Margossian SP; Li H; Zassenhaus HP; Butow RA Cell; 1996 Jan; 84(2):199-209. PubMed ID: 8565066 [TBL] [Abstract][Full Text] [Related]
33. ATP-dependent roles of the DEAD-box protein Mss116p in group II intron splicing in vitro and in vivo. Potratz JP; Del Campo M; Wolf RZ; Lambowitz AM; Russell R J Mol Biol; 2011 Aug; 411(3):661-79. PubMed ID: 21679717 [TBL] [Abstract][Full Text] [Related]
34. Protein-dependent splicing of a group I intron in ribonucleoprotein particles and soluble fractions. Garriga G; Lambowitz AM Cell; 1986 Aug; 46(5):669-80. PubMed ID: 2427199 [TBL] [Abstract][Full Text] [Related]
35. Secondary structure of the yeast Saccharomyces cerevisiae pre-U3A snoRNA and its implication for splicing efficiency. Mougin A; Grégoire A; Banroques J; Ségault V; Fournier R; Brulé F; Chevrier-Miller M; Branlant C RNA; 1996 Nov; 2(11):1079-93. PubMed ID: 8903339 [TBL] [Abstract][Full Text] [Related]
36. The maturase encoded by a group I intron from Aspergillus nidulans stabilizes RNA tertiary structure and promotes rapid splicing. Ho Y; Waring RB J Mol Biol; 1999 Oct; 292(5):987-1001. PubMed ID: 10512698 [TBL] [Abstract][Full Text] [Related]
37. In vivo commitment to yeast cotranscriptional splicing is sensitive to transcription elongation mutants. Lacadie SA; Tardiff DF; Kadener S; Rosbash M Genes Dev; 2006 Aug; 20(15):2055-66. PubMed ID: 16882983 [TBL] [Abstract][Full Text] [Related]
38. Involvement of DEAD-box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis-dependent and -independent mechanisms, and general RNA chaperone activity. Halls C; Mohr S; Del Campo M; Yang Q; Jankowsky E; Lambowitz AM J Mol Biol; 2007 Jan; 365(3):835-55. PubMed ID: 17081564 [TBL] [Abstract][Full Text] [Related]
39. Structural requirements for selection of 5'- and 3' splice sites of group II introns. Wallasch C; Mörl M; Niemer I; Schmelzer C Nucleic Acids Res; 1991 Jun; 19(12):3307-14. PubMed ID: 2062646 [TBL] [Abstract][Full Text] [Related]