BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 8525375)

  • 1. Evidence for developmentally programmed transdifferentiation in mouse esophageal muscle.
    Patapoutian A; Wold BJ; Wagner RA
    Science; 1995 Dec; 270(5243):1818-21. PubMed ID: 8525375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transdifferentiation of esophageal smooth to skeletal muscle is myogenic bHLH factor-dependent.
    Kablar B; Tajbakhsh S; Rudnicki MA
    Development; 2000 Apr; 127(8):1627-39. PubMed ID: 10725239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Both smooth and skeletal muscle precursors are present in foetal mouse oesophagus and they follow different differentiation pathways.
    Zhao W; Dhoot GK
    Dev Dyn; 2000 Aug; 218(4):587-602. PubMed ID: 10906778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal muscle precursors in mouse esophagus are determined during early fetal development.
    Zhao W; Dhoot GK
    Dev Dyn; 2000 Sep; 219(1):10-20. PubMed ID: 10974667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skeletal myogenesis in the mouse esophagus does not occur through transdifferentiation.
    Rishniw M; Xin HB; Deng KY; Kotlikoff MI
    Genesis; 2003 Jun; 36(2):81-2. PubMed ID: 12820168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial and temporal organization of TrkB expression in the developing musculature of the mouse esophagus.
    Wörl J; Neuhuber WL
    Histochem Cell Biol; 2000 Sep; 114(3):229-38. PubMed ID: 11083466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastructural analysis of the transdifferentiation of smooth muscle to skeletal muscle in the murine esophagus.
    Stratton CJ; Bayguinov Y; Sanders KM; Ward SM
    Cell Tissue Res; 2000 Aug; 301(2):283-98. PubMed ID: 10955724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructural analysis of the smooth-to-striated transition zone in the developing mouse esophagus: emphasis on apoptosis of smooth and origin and differentiation of striated muscle cells.
    Wörl J; Neuhuber WL
    Dev Dyn; 2005 Jul; 233(3):964-82. PubMed ID: 15918172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for the involvement of neurotrophins in muscle transdifferentiation and acetylcholine receptor transformation in the esophagus of Myf5(-/-):MyoD(-/-) and NT-3(-/-) embryos.
    Reddy T; Kablar B
    Dev Dyn; 2004 Dec; 231(4):683-92. PubMed ID: 15497153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The expression of nestin delineates skeletal muscle differentiation in the developing rat esophagus.
    Su PH; Wang TC; Wong ZR; Huang BM; Yang HY
    J Anat; 2011 Mar; 218(3):311-23. PubMed ID: 21323914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphology of the developing muscularis externa in the mouse esophagus.
    Cao XM; Yang YP; Li HR; Cui HL; Ya J
    Dis Esophagus; 2012 Jan; 25(1):10-6. PubMed ID: 21595780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smooth muscle persists in the muscularis externa of developing and adult mouse esophagus.
    Rishniw M; Fisher PW; Doran RM; Meadows E; Klein WH; Kotlikoff MI
    J Muscle Res Cell Motil; 2007; 28(2-3):153-65. PubMed ID: 17638088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lamprey contractile protein genes mark different populations of skeletal muscles during development.
    Kusakabe R; Takechi M; Tochinai S; Kuratani S
    J Exp Zool B Mol Dev Evol; 2004 Mar; 302(2):121-33. PubMed ID: 15054856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smooth-to-striated muscle transition in human esophagus: an immunohistochemical study using fetal and adult materials.
    Katori Y; Cho BH; Song CH; Fujimiya M; Murakami G; Kawase T
    Ann Anat; 2010 Feb; 192(1):33-41. PubMed ID: 20004561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration.
    De Angelis L; Berghella L; Coletta M; Lattanzi L; Zanchi M; Cusella-De Angelis MG; Ponzetto C; Cossu G
    J Cell Biol; 1999 Nov; 147(4):869-78. PubMed ID: 10562287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drosophila MEF2, a transcription factor that is essential for myogenesis.
    Bour BA; O'Brien MA; Lockwood WL; Goldstein ES; Bodmer R; Taghert PH; Abmayr SM; Nguyen HT
    Genes Dev; 1995 Mar; 9(6):730-41. PubMed ID: 7729689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myosin heavy chain isoform expression in rat smooth muscle development.
    White SL; Zhou MY; Low RB; Periasamy M
    Am J Physiol; 1998 Aug; 275(2):C581-9. PubMed ID: 9688613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time course and side-by-side analysis of mesodermal, pre-myogenic, myogenic and differentiated cell markers in the chicken model for skeletal muscle formation.
    Berti F; Nogueira JM; Wöhrle S; Sobreira DR; Hawrot K; Dietrich S
    J Anat; 2015 Sep; 227(3):361-82. PubMed ID: 26278933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration.
    Hernández-Hernández JM; García-González EG; Brun CE; Rudnicki MA
    Semin Cell Dev Biol; 2017 Dec; 72():10-18. PubMed ID: 29127045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Embryonic, fetal, and neonatal tongue myoblasts exhibit molecular heterogeneity in vitro.
    Dalrymple KR; Prigozy TI; Shuler CF
    Differentiation; 2000 Dec; 66(4-5):218-26. PubMed ID: 11269948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.