These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 8525410)
1. Effect of inorganic salts, soaps and detergents on dissolution and larvicidal activity of alginate formulation of Bacillus sphaericus. Vijayan V; Balaraman K Southeast Asian J Trop Med Public Health; 1995 Mar; 26(1):183-7. PubMed ID: 8525410 [TBL] [Abstract][Full Text] [Related]
2. Development of alginate-based slow release formulation of Bacillus sphaericus for controlling Culex quinquefasciatus. Gunasekaran K; Vijayan V; Shriram AN; Subramanian S; Balaraman K Southeast Asian J Trop Med Public Health; 1997 Mar; 28(1):203-7. PubMed ID: 9322306 [TBL] [Abstract][Full Text] [Related]
3. Cross-resistance to Bacillus sphaericus strains in Culex quinquefasciatus resistant to B. sphaericus 1593M. Poopathi S; Mani TR; Rao DR; Baskaran G; Kabilan L Southeast Asian J Trop Med Public Health; 1999 Sep; 30(3):477-81. PubMed ID: 10774654 [TBL] [Abstract][Full Text] [Related]
4. Development of a self floating slow release formulation of Bacillus thuringiensis var. israelensis and its larvicidal activity. Prabakaran G; Padmanabhan V; Balaraman K Indian J Exp Biol; 2001 Jan; 39(1):82-4. PubMed ID: 11349533 [TBL] [Abstract][Full Text] [Related]
5. Sustained release pellets for control of Culex larvae with Bacillus sphaericus. Lord JC J Am Mosq Control Assoc; 1991 Dec; 7(4):560-4. PubMed ID: 1787401 [TBL] [Abstract][Full Text] [Related]
6. Laboratory and field evaluation of Spherix, a formulation of Bacillus sphaericus (B-101), to control breeding of Anopheles stephensi and Culex quinquefasciatus. Mittal PK; Adak T; Batra CP; Sharma VP Indian J Malariol; 1993 Jun; 30(2):81-9. PubMed ID: 8405598 [TBL] [Abstract][Full Text] [Related]
7. Control of mosquito larvae by encapsulated pathogen Bacillus thuringiensis var. israelensis. Elçin YM J Microencapsul; 1995; 12(5):515-23. PubMed ID: 8544095 [TBL] [Abstract][Full Text] [Related]
8. Larvicidal efficacy of various formulations of Bacillus sphaericus against the resistant strain of Culex quinquefasciatus (Diptera: Culicidae) from southern India. Subbiah P; Ramesh N; Sundaravadivelu K; Samuel P; Tyagi BK Trop Biomed; 2009 Apr; 26(1):23-9. PubMed ID: 19696724 [TBL] [Abstract][Full Text] [Related]
9. Laboratory evaluation of biotic and abiotic factors that may influence larvicidal activity of Bacillus thuringiensis serovar. israelensis against two Florida mosquito species. Nayar JK; Knight JW; Ali A; Carlson DB; O'Bryan PD J Am Mosq Control Assoc; 1999 Mar; 15(1):32-42. PubMed ID: 10342266 [TBL] [Abstract][Full Text] [Related]
10. Polymeric macroporous formulations for the control release of mosquitocidal Bacillus sphaericus ISPC-8. Tripathi A; Hadapad AB; Hire RS; Melo JS; D'Souza SF Enzyme Microb Technol; 2013 Dec; 53(6-7):398-405. PubMed ID: 24315643 [TBL] [Abstract][Full Text] [Related]
11. Effect of ultraviolet radiation on spore viability and mosquitocidal activity of an indigenous ISPC-8 Bacillus sphaericus Neide strain. Hadapad AB; Vijayalakshmi N; Hire RS; Dongre TK Acta Trop; 2008 Aug; 107(2):113-6. PubMed ID: 18538292 [TBL] [Abstract][Full Text] [Related]
12. Synergistic Activity Between S-Layer Protein and Spore-Crystal Preparations from Lysinibacillus sphaericus Against Culex quinquefasciatus Larvae. Lozano LC; Dussán J Curr Microbiol; 2017 Mar; 74(3):371-376. PubMed ID: 28168605 [TBL] [Abstract][Full Text] [Related]
13. UV protectants for the biopesticide based on Bacillus sphaericus Neide and their role in protecting the binary toxins from UV radiation. Hadapad AB; Hire RS; Vijayalakshmi N; Dongre TK J Invertebr Pathol; 2009 Mar; 100(3):147-52. PubMed ID: 19167401 [TBL] [Abstract][Full Text] [Related]
14. Identification of the functional site in the mosquito larvicidal binary toxin of Bacillus sphaericus 1593M by site-directed mutagenesis. Elangovan G; Shanmugavelu M; Rajamohan F; Dean DH; Jayaraman K Biochem Biophys Res Commun; 2000 Oct; 276(3):1048-55. PubMed ID: 11027588 [TBL] [Abstract][Full Text] [Related]
15. Mosquito host range and field activity of Bacillus sphaericus isolate 2297 (serotype 25). Lacey LA; Lacey CM; Peacock B; Thiery I J Am Mosq Control Assoc; 1988 Mar; 4(1):51-6. PubMed ID: 2903904 [TBL] [Abstract][Full Text] [Related]
16. [Evaluation of the triflumuron and the mixture of Bacillus thuringiensis plus Bacillus sphaericus for control of the immature stages of Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) in catch basins]. Giraldo-Calderón GI; Pérez M; Morales CA; Ocampo CB Biomedica; 2008 Jun; 28(2):224-33. PubMed ID: 18719724 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of polymer-based granular formulations of Bacillus thuringiensis israelensis against larval Aedes aegypti in the laboratory. Maldonado Blanco MG; Galán Wong LJ; Rodríguez Padilla C; Quiroz Martínez H J Am Mosq Control Assoc; 2002 Dec; 18(4):352-8. PubMed ID: 12542194 [TBL] [Abstract][Full Text] [Related]
18. Two Bacillus sphaericus binary toxins share the midgut receptor binding site: implications for resistance of Culex pipiens complex (Diptera: Culicidae) larvae. Silva-Filha MH; Oliveira CM; Regis L; Yuan Z; Rico CM; Nielsen-LeRoux C FEMS Microbiol Lett; 2004 Dec; 241(2):185-91. PubMed ID: 15598531 [TBL] [Abstract][Full Text] [Related]
19. Long residual activity of Bacillus sphaericus 1593 against Culex quinquefasciatus larvae in artificial pools. Pantuwatana S; Maneeroj R; Upatham ES Southeast Asian J Trop Med Public Health; 1989 Sep; 20(3):421-7. PubMed ID: 2633350 [TBL] [Abstract][Full Text] [Related]
20. Residual activity of Bacillus thuringiensis serovars medellin and jegathesan on Culex pipiens and Aedes aegypti larvae. Thiéry I; Fouque F; Gaven B; Lagneau C J Am Mosq Control Assoc; 1999 Sep; 15(3):371-9. PubMed ID: 10480130 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]