BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 8527030)

  • 1. The size of the topological domain modulates the B-Z transition of a (TG)n containing repeat.
    Albert AC; Leng M; Rahmouni AR
    J Biomol Struct Dyn; 1995 Aug; 13(1):47-56. PubMed ID: 8527030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gradual and oriented B-Z transition in 5'-untranscribed region of mouse ribosomal DNA.
    Albert AC; Roman AM; Bouche G; Leng M; Rahmouni AR
    J Biol Chem; 1994 Jul; 269(30):19238-44. PubMed ID: 8034685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic distribution of a short region of Z-DNA within a long repeated sequence in negatively supercoiled plasmids.
    Johnston BH; Ohara W; Rich A
    J Biol Chem; 1988 Apr; 263(10):4512-5. PubMed ID: 2832396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Left-handed Z-DNA helices in polymers, restriction fragments, and recombinant plasmids.
    O'Connor T; Kilpatrick MW; Klysik J; Larson JE; Martin JC; Singleton CK; Stirdivant SM; Zacharias W; Wells RD
    J Biomol Struct Dyn; 1983 Dec; 1(4):999-1009. PubMed ID: 6101088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of chemical and enzymatic cleavage frequencies in supercoiled DNA.
    Tsen H; Levene SD
    J Mol Biol; 2004 Mar; 336(5):1087-102. PubMed ID: 15037071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The non-B-DNA structure of d(CA/TG)n differs from that of Z-DNA.
    Kladde MP; Kohwi Y; Kohwi-Shigematsu T; Gorski J
    Proc Natl Acad Sci U S A; 1994 Mar; 91(5):1898-902. PubMed ID: 8127902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of global DNA topology on cruciform formation in supercoiled DNA.
    Oussatcheva EA; Pavlicek J; Sankey OF; Sinden RR; Lyubchenko YL; Potaman VN
    J Mol Biol; 2004 May; 338(4):735-43. PubMed ID: 15099741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical mechanical approach for predicting the transition to non-B DNA structures in supercoiled DNA.
    Katsura S; Makishima F; Nishimura H
    J Biomol Struct Dyn; 1993 Feb; 10(4):639-56. PubMed ID: 8466670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Comparison of the state of the area between B- and Z-segments of superhelical plasmids in vitro and in situ].
    Ulanov BP; Matorina TI; Pozdeev PP
    Mol Biol (Mosk); 1992; 26(4):927-35. PubMed ID: 1435783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Condensation of plasmids enhanced by Z-DNA conformation of d(CG)n inserts.
    Ma C; Sun L; Bloomfield VA
    Biochemistry; 1995 Mar; 34(11):3521-8. PubMed ID: 7893647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple transitions to non-B-DNA structures occur in the distal regulatory region of the rat prolactin gene.
    Kladde MP; D'Cunha J; Gorski J
    J Mol Biol; 1993 Jan; 229(2):344-67. PubMed ID: 8429551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The non-B-DNA structure of d(CA/TG)n does not differ from that of Z-DNA.
    Ho PS
    Proc Natl Acad Sci U S A; 1994 Sep; 91(20):9549-53. PubMed ID: 7937803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of left-handed Z-DNA formation in short d(CG)n sequences in Escherichia coli and Halobacterium halobium plasmids. Stabilization by increasing repeat length and DNA supercoiling but not salinity.
    Kim J; Yang C; DasSarma S
    J Biol Chem; 1996 Apr; 271(16):9340-6. PubMed ID: 8621598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competing B-Z and helix-coil conformational transitions in supercoiled plasmid DNA.
    Aboul-ela F; Bowater RP; Lilley DM
    J Biol Chem; 1992 Jan; 267(3):1776-85. PubMed ID: 1730717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of unrestrained negative supercoiling and topological domain size in living human cells.
    Kramer PR; Sinden RR
    Biochemistry; 1997 Mar; 36(11):3151-8. PubMed ID: 9115991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model of the strain-induced B-Z transition.
    Sarai A; Jernigan RL
    J Biomol Struct Dyn; 1985 Feb; 2(4):767-84. PubMed ID: 3917118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sticky DNA: in vivo formation in E. coli and in vitro association of long GAA*TTC tracts to generate two independent supercoiled domains.
    Son LS; Bacolla A; Wells RD
    J Mol Biol; 2006 Jul; 360(2):267-84. PubMed ID: 16764889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural interconversion of alternating purine-pyrimidine inverted repeats cloned in supercoiled plasmids.
    Klysik J; Zacharias W; Galazka G; Kwinkowski M; Uznanski B; Okruszek A
    Nucleic Acids Res; 1988 Jul; 16(14B):6915-33. PubMed ID: 3405754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pH-dependent structural transition in the homopurine-homopyrimidine tract in superhelical DNA.
    Lyamichev VI; Mirkin SM; Frank-Kamenetskii MD
    J Biomol Struct Dyn; 1985 Oct; 3(2):327-38. PubMed ID: 3917024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Length-dependent cruciform extrusion in d(GTAC)n sequences.
    Naylor LH; Yee HA; van de Sande JH
    J Biomol Struct Dyn; 1988 Feb; 5(4):895-912. PubMed ID: 3271495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.