These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 8527036)
1. Ontogeny of vasotocinergic and mesotocinergic systems in the brain of the South African clawed frog Xenopus laevis. González A; Muñoz A; Muñoz M; Marín O; Smeets WJ J Chem Neuroanat; 1995 Jul; 9(1):27-40. PubMed ID: 8527036 [TBL] [Abstract][Full Text] [Related]
2. Comparative analysis of the vasotocinergic and mesotocinergic cells and fibers in the brain of two amphibians, the anuran Rana ridibunda and the urodele Pleurodeles waltlii. González A; Smeets WJ J Comp Neurol; 1992 Jan; 315(1):53-73. PubMed ID: 1541723 [TBL] [Abstract][Full Text] [Related]
3. Distribution of vasotocin- and mesotocin-like immunoreactivities in the brain of the South African clawed frog Xenopus-laevis. González A; Smeets WJ J Chem Neuroanat; 1992; 5(6):465-79. PubMed ID: 1476666 [TBL] [Abstract][Full Text] [Related]
4. The distribution of vasotocin and mesotocin immunoreactivity in the brain of the snake, Bothrops jararaca. Silveira PF; Breno MC; Martín del Río MP; Mancera JM J Chem Neuroanat; 2002 Jun; 24(1):15-26. PubMed ID: 12084408 [TBL] [Abstract][Full Text] [Related]
5. Distribution of vasotocin- and mesotocin-like immunoreactivities in the brain of typhlonectes compressicauda (Amphibia, gymnophiona): further assessment of primitive and derived traits of amphibian neuropeptidergic systems. González A; Smeets WJ Cell Tissue Res; 1997 Feb; 287(2):305-14. PubMed ID: 8995201 [TBL] [Abstract][Full Text] [Related]
6. Vasotocin and mesotocin in the brains of amphibians: state of the art. Smeets WJ; González A Microsc Res Tech; 2001 Aug; 54(3):125-36. PubMed ID: 11458397 [TBL] [Abstract][Full Text] [Related]
7. The distribution of vasotocin and mesotocin immunoreactivity in the hypothalamic magnocellular neurosecretory nuclei of the Saharan herbivorous lizard, Uromastix acanthinurus Bell, 1825 (Sauria-Agamidae). Barka-Dahane Z; Bendjelloul M; Estabel J; Exbrayat JM Histol Histopathol; 2010 Feb; 25(2):159-75. PubMed ID: 20017103 [TBL] [Abstract][Full Text] [Related]
8. Neuropeptide Y in the developing and adult brain of the South African clawed toad Xenopus laevis. Tuinhof R; González A; Smeets WJ; Roubos EW J Chem Neuroanat; 1994 Oct; 7(4):271-83. PubMed ID: 7873097 [TBL] [Abstract][Full Text] [Related]
9. Descending supraspinal pathways in amphibians: III. Development of descending projections to the spinal cord in Xenopus laevis with emphasis on the catecholaminergic inputs. Sánchez-Camacho C; Martín O; Ten Donkelaar HJ; González A J Comp Neurol; 2002 Apr; 446(1):11-24. PubMed ID: 11920716 [TBL] [Abstract][Full Text] [Related]
10. Choline acetyltransferase immunoreactivity in the developing brain of Xenopus laevis. López JM; Smeets WJ; González A J Comp Neurol; 2002 Nov; 453(4):418-34. PubMed ID: 12389211 [TBL] [Abstract][Full Text] [Related]
11. The distribution of corticotropin-releasing factor--immunoreactive neurons and nerve fibers in the brain of the snake, Natrix maura. Coexistence with arginine vasotocin and mesotocin. Mancera JM; López Avalos MD; Pérez-Fígares JM; Fernández-Llebrez P Cell Tissue Res; 1991 Jun; 264(3):539-48. PubMed ID: 1868522 [TBL] [Abstract][Full Text] [Related]
12. Development of arginine vasotocin innervation in two species of anuran amphibian: Rana catesbeiana and Rana sylvatica. Mathieson WB Histochem Cell Biol; 1996 Apr; 105(4):305-18. PubMed ID: 9072187 [TBL] [Abstract][Full Text] [Related]
13. Immunohistochemical localization of corticotropin-releasing factor- and arginine vasotocin-like immunoreactivities in the brain and pituitary of the American bullfrog (Rana catesbeiana) during development and metamorphosis. Carr JA; Norris DO Gen Comp Endocrinol; 1990 May; 78(2):180-8. PubMed ID: 2162305 [TBL] [Abstract][Full Text] [Related]
14. Neuroanatomical distribution of vasotocin and mesotocin in two urodele amphibians (Plethodon shermani and Taricha granulosa) based on in situ hybridization histochemistry. Hollis DM; Chu J; Walthers EA; Heppner BL; Searcy BT; Moore FL Brain Res; 2005 Feb; 1035(1):1-12. PubMed ID: 15713271 [TBL] [Abstract][Full Text] [Related]
15. Identification and localization of neurohypophysial peptides in the brain of a caecilian amphibian, Typhlonectes natans (Amphibia: Gymnophiona). Hilscher-Conklin C; Conlon JM; Boyd SK J Comp Neurol; 1998 May; 394(2):139-51. PubMed ID: 9552122 [TBL] [Abstract][Full Text] [Related]
16. Distribution of arginine vasotocin in the brain of the lizard Anolis carolinensis. Propper CR; Jones RE; Lopez KH Cell Tissue Res; 1992 Feb; 267(2):391-8. PubMed ID: 1600566 [TBL] [Abstract][Full Text] [Related]
17. Galanin-like immunoreactivity in the brain of teleosts: distribution and relation to substance P, vasotocin, and isotocin in the Atlantic salmon (Salmo salar). Holmqvist BI; Ekström P J Comp Neurol; 1991 Apr; 306(3):361-81. PubMed ID: 1713923 [TBL] [Abstract][Full Text] [Related]
18. Distribution of galanin-like immunoreactivity in the brain of Rana esculenta and Xenopus laevis. Lázár GY; Liposits ZS; Tóth P; Trasti SL; Maderdrut JL; Merchenthaler I J Comp Neurol; 1991 Aug; 310(1):45-67. PubMed ID: 1719037 [TBL] [Abstract][Full Text] [Related]
19. The topography of mesotocin and vasotocin systems in the brain of the domestic mallard and Japanese quail: immunocytochemical identification. Bons N Cell Tissue Res; 1980; 213(1):37-51. PubMed ID: 7459995 [TBL] [Abstract][Full Text] [Related]
20. Immunocytochemical studies of vasotocin, mesotocin, and neurophysins in the Xenopus hypothalamo-neurohypophysial system. Conway KM; Gainer H J Comp Neurol; 1987 Oct; 264(4):494-508. PubMed ID: 3680640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]