These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 8527435)

  • 21. Binding specificity and the ligand dissociation process in the E. coli biotin holoenzyme synthetase.
    Kwon K; Streaker ED; Beckett D
    Protein Sci; 2002 Mar; 11(3):558-70. PubMed ID: 11847279
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sequence-function relationships in folding upon binding.
    Eginton C; Naganathan S; Beckett D
    Protein Sci; 2015 Feb; 24(2):200-11. PubMed ID: 25407143
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Allosteric coupling via distant disorder-to-order transitions.
    Eginton C; Cressman WJ; Bachas S; Wade H; Beckett D
    J Mol Biol; 2015 Apr; 427(8):1695-704. PubMed ID: 25746672
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Long Distance Modulation of Disorder-to-Order Transitions in Protein Allostery.
    Wang J; Custer G; Beckett D; Matysiak S
    Biochemistry; 2017 Aug; 56(34):4478-4488. PubMed ID: 28718281
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Staphylococcus aureus group II biotin protein ligase BirA is an effective regulator of biotin operon transcription and requires the DNA binding domain for full enzymatic activity.
    Henke SK; Cronan JE
    Mol Microbiol; 2016 Nov; 102(3):417-429. PubMed ID: 27445042
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein:protein interactions in control of a transcriptional switch.
    Adikaram PR; Beckett D
    J Mol Biol; 2013 Nov; 425(22):4584-94. PubMed ID: 23896299
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The biotin regulatory system: kinetic control of a transcriptional switch.
    Streaker ED; Beckett D
    Biochemistry; 2006 May; 45(20):6417-25. PubMed ID: 16700552
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The switch regulating transcription of the Escherichia coli biotin operon does not require extensive protein-protein interactions.
    Solbiati J; Cronan JE
    Chem Biol; 2010 Jan; 17(1):11-7. PubMed ID: 20142036
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The biotin repressor: thermodynamic coupling of corepressor binding, protein assembly, and sequence-specific DNA binding.
    Streaker ED; Gupta A; Beckett D
    Biochemistry; 2002 Dec; 41(48):14263-71. PubMed ID: 12450391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural ordering of disordered ligand-binding loops of biotin protein ligase into active conformations as a consequence of dehydration.
    Gupta V; Gupta RK; Khare G; Salunke DM; Surolia A; Tyagi AK
    PLoS One; 2010 Feb; 5(2):e9222. PubMed ID: 20169168
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional versatility of a single protein surface in two protein:protein interactions.
    Adikaram PR; Beckett D
    J Mol Biol; 2012 Jun; 419(3-4):223-33. PubMed ID: 22446587
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystallization of the bifunctional biotin operon repressor.
    Brennan RG; Vasu S; Matthews BW; Otsuka AJ
    J Biol Chem; 1989 Jan; 264(1):5. PubMed ID: 2642476
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cloning and characterization of the Bacillus subtilis birA gene encoding a repressor of the biotin operon.
    Bower S; Perkins J; Yocum RR; Serror P; Sorokin A; Rahaim P; Howitt CL; Prasad N; Ehrlich SD; Pero J
    J Bacteriol; 1995 May; 177(9):2572-5. PubMed ID: 7730294
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heat Capacity Changes and Disorder-to-Order Transitions in Allosteric Activation.
    Cressman WJ; Beckett D
    Biochemistry; 2016 Jan; 55(2):243-52. PubMed ID: 26678378
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Corepressor-induced organization and assembly of the biotin repressor: a model for allosteric activation of a transcriptional regulator.
    Weaver LH; Kwon K; Beckett D; Matthews BW
    Proc Natl Acad Sci U S A; 2001 May; 98(11):6045-50. PubMed ID: 11353844
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural impact of human and Escherichia coli biotin carboxyl carrier proteins on biotin attachment.
    Healy S; McDonald MK; Wu X; Yue WW; Kochan G; Oppermann U; Gravel RA
    Biochemistry; 2010 Jun; 49(22):4687-94. PubMed ID: 20443544
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The wing of a winged helix-turn-helix transcription factor organizes the active site of BirA, a bifunctional repressor/ligase.
    Chakravartty V; Cronan JE
    J Biol Chem; 2013 Dec; 288(50):36029-39. PubMed ID: 24189073
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biotinyl 5'-adenylate: corepressor role in the regulation of the biotin genes of Escherichia coli K-12.
    Prakash O; Eisenberg MA
    Proc Natl Acad Sci U S A; 1979 Nov; 76(11):5592-5. PubMed ID: 392507
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Native mass spectrometry identifies an alternative DNA-binding pathway for BirA from Staphylococcus aureus.
    Satiaputra J; Sternicki LM; Hayes AJ; Pukala TL; Booker GW; Shearwin KE; Polyak SW
    Sci Rep; 2019 Feb; 9(1):2767. PubMed ID: 30808984
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diversity in functional organization of class I and class II biotin protein ligase.
    Purushothaman S; Annamalai K; Tyagi AK; Surolia A
    PLoS One; 2011 Mar; 6(3):e16850. PubMed ID: 21390227
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.