BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 8527450)

  • 1. Structural changes in the lumirhodopsin-to-metarhodopsin I conversion of air-dried bovine rhodopsin.
    Nishimura S; Sasaki J; Kandori H; Lugtenburg J; Maeda A
    Biochemistry; 1995 Dec; 34(51):16758-63. PubMed ID: 8527450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water structural changes in lumirhodopsin, metarhodopsin I, and metarhodopsin II upon photolysis of bovine rhodopsin: analysis by Fourier transform infrared spectroscopy.
    Maeda A; Ohkita YJ; Sasaki J; Shichida Y; Yoshizawa T
    Biochemistry; 1993 Nov; 32(45):12033-8. PubMed ID: 8218280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in structure of the chromophore in the photochemical process of bovine rhodopsin as revealed by FTIR spectroscopy for hydrogen out-of-plane vibrations.
    Ohkita YJ; Sasaki J; Maeda A; Yoshizawa T; Groesbeek M; Verdegem P; Lugtenburg J
    Biophys Chem; 1995; 56(1-2):71-8. PubMed ID: 7662871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmembrane signaling mediated by water in bovine rhodopsin.
    Nishimura S; Kandori H; Maeda A
    Photochem Photobiol; 1997 Dec; 66(6):796-801. PubMed ID: 9421967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural models of the photointermediates in the rhodopsin photocascade, lumirhodopsin, metarhodopsin I, and metarhodopsin II.
    Ishiguro M; Oyama Y; Hirano T
    Chembiochem; 2004 Mar; 5(3):298-310. PubMed ID: 14997522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural dynamics of water and the peptide backbone around the Schiff base associated with the light-activated process of octopus rhodopsin.
    Nishimura S; Kandori H; Nakagawa M; Tsuda M; Maeda A
    Biochemistry; 1997 Jan; 36(4):864-70. PubMed ID: 9020785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photolysis of rhodopsin results in deprotonation of its retinal Schiff's base prior to formation of metarhodopsin II.
    Thorgeirsson TE; Lewis JW; Wallace-Williams SE; Kliger DS
    Photochem Photobiol; 1992 Dec; 56(6):1135-44. PubMed ID: 1337214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural changes in lumirhodopsin and metarhodopsin I studied by their photoreactions at 77 K.
    Furutani Y; Kandori H; Shichida Y
    Biochemistry; 2003 Jul; 42(28):8494-500. PubMed ID: 12859195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition of rhodopsin into the active metarhodopsin II state opens a new light-induced pathway linked to Schiff base isomerization.
    Ritter E; Zimmermann K; Heck M; Hofmann KP; Bartl FJ
    J Biol Chem; 2004 Nov; 279(46):48102-11. PubMed ID: 15322129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of the metarhodopsin I/metarhodopsin II equilibrium of bovine rhodopsin by ionic strength--evidence for a surface-charge effect.
    Delange F; Merkx M; Bovee-Geurts PH; Pistorius AM; Degrip WJ
    Eur J Biochem; 1997 Jan; 243(1-2):174-80. PubMed ID: 9030737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fourier transform infrared studies of active-site-methylated rhodopsin. Implications for chromophore-protein interaction, transducin activation, and the reaction pathway.
    Ganter UM; Longstaff C; Pajares MA; Rando RR; Siebert F
    Biophys J; 1991 Mar; 59(3):640-4. PubMed ID: 2049524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Movement of the retinylidene Schiff base counterion in rhodopsin by one helix turn reverses the pH dependence of the metarhodopsin I to metarhodopsin II transition.
    Zvyaga TA; Min KC; Beck M; Sakmar TP
    J Biol Chem; 1993 Mar; 268(7):4661-7. PubMed ID: 8444840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural changes in the peptide backbone in complex formation between activated rhodopsin and transducin studied by FTIR spectroscopy.
    Nishimura S; Sasaki J; Kandori H; Matsuda T; Fukada Y; Maeda A
    Biochemistry; 1996 Oct; 35(41):13267-71. PubMed ID: 8873590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromophore structure in lumirhodopsin and metarhodopsin I by time-resolved resonance Raman microchip spectroscopy.
    Pan D; Mathies RA
    Biochemistry; 2001 Jul; 40(26):7929-36. PubMed ID: 11425321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of glutamic acid 113 as the Schiff base proton acceptor in the metarhodopsin II photointermediate of rhodopsin.
    Jäger F; Fahmy K; Sakmar TP; Siebert F
    Biochemistry; 1994 Sep; 33(36):10878-82. PubMed ID: 7916209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two intermediates appear on the lumirhodopsin time scale after rhodopsin photoexcitation.
    Szundi I; Lewis JW; Kliger DS
    Biochemistry; 2003 May; 42(17):5091-8. PubMed ID: 12718552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational changes of cytosolic loops of bovine rhodopsin during the transition to metarhodopsin-II: an investigation by Fourier transform infrared difference spectroscopy.
    Ganter UM; Charitopoulos T; Virmaux N; Siebert F
    Photochem Photobiol; 1992 Jul; 56(1):57-62. PubMed ID: 1508983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The photoreaction of vacuum-dried rhodopsin at low temperature: evidence for charge stabilization by water.
    Ganter UM; Schmid ED; Siebert F
    J Photochem Photobiol B; 1988 Dec; 2(4):417-26. PubMed ID: 3149997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhodopsin-lumirhodopsin phototransition of bovine rhodopsin investigated by Fourier transform infrared difference spectroscopy.
    Ganter UM; Gärtner W; Siebert F
    Biochemistry; 1988 Sep; 27(19):7480-8. PubMed ID: 3207686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FTIR spectroscopy reveals microscopic structural changes of the protein around the rhodopsin chromophore upon photoisomerization.
    Kandori H; Maeda A
    Biochemistry; 1995 Oct; 34(43):14220-9. PubMed ID: 7578021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.