These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 8527487)

  • 41. The reaction mechanism for CD38. A single intermediate is responsible for cyclization, hydrolysis, and base-exchange chemistries.
    Sauve AA; Munshi C; Lee HC; Schramm VL
    Biochemistry; 1998 Sep; 37(38):13239-49. PubMed ID: 9748331
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38.
    Howard M; Grimaldi JC; Bazan JF; Lund FE; Santos-Argumedo L; Parkhouse RM; Walseth TF; Lee HC
    Science; 1993 Nov; 262(5136):1056-9. PubMed ID: 8235624
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ectocellular in vitro and in vivo metabolism of cADP-ribose in cerebellum.
    De Flora A; Guida L; Franco L; Zocchi E; Pestarino M; Usai C; Marchetti C; Fedele E; Fontana G; Raiteri M
    Biochem J; 1996 Dec; 320 ( Pt 2)(Pt 2):665-71. PubMed ID: 8973582
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inhibition of cADPR-Hydrolase by ADP-ribose potentiates cADPR synthesis from beta-NAD+.
    Genazzani AA; Bak J; Galione A
    Biochem Biophys Res Commun; 1996 Jun; 223(3):502-7. PubMed ID: 8687425
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Preparation of cyclic ADP-ribose, 2'-phospho-cyclic ADP-ribose, and nicotinate adenine dinucleotide phosphate: possible second messengers of calcium signaling.
    Jacobson MK; Coyle DL; Vu CQ; Kim H; Jacobson EL
    Methods Enzymol; 1997; 280():265-75. PubMed ID: 9211322
    [No Abstract]   [Full Text] [Related]  

  • 46. New functions of a long-known molecule. Emerging roles of NAD in cellular signaling.
    Ziegler M
    Eur J Biochem; 2000 Mar; 267(6):1550-64. PubMed ID: 10712584
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ligand-induced internalization of CD38 results in intracellular Ca2+ mobilization: role of NAD+ transport across cell membranes.
    Zocchi E; Usai C; Guida L; Franco L; Bruzzone S; Passalacqua M; De Flora A
    FASEB J; 1999 Feb; 13(2):273-83. PubMed ID: 9973315
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An NAD derivative produced during transfer RNA splicing: ADP-ribose 1"-2" cyclic phosphate.
    Culver GM; McCraith SM; Zillmann M; Kierzek R; Michaud N; LaReau RD; Turner DH; Phizicky EM
    Science; 1993 Jul; 261(5118):206-8. PubMed ID: 8392224
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [The cyclic ADP-ribose signal system in insulin secretion].
    Takasawa S
    Seikagaku; 1998 Jun; 70(6):425-33. PubMed ID: 9695679
    [No Abstract]   [Full Text] [Related]  

  • 50. Regulation of NAD+ glycohydrolase activity by NAD(+)-dependent auto-ADP-ribosylation.
    Han MK; Lee JY; Cho YS; Song YM; An NH; Kim HR; Kim UH
    Biochem J; 1996 Sep; 318 ( Pt 3)(Pt 3):903-8. PubMed ID: 8836136
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nicotinamide adenine dinucleotide (NAD) and its metabolites inhibit T lymphocyte proliferation: role of cell surface NAD glycohydrolase and pyrophosphatase activities.
    Bortell R; Moss J; McKenna RC; Rigby MR; Niedzwiecki D; Stevens LA; Patton WA; Mordes JP; Greiner DL; Rossini AA
    J Immunol; 2001 Aug; 167(4):2049-59. PubMed ID: 11489987
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The kinetics of cyclic ADP-ribose formation in heart muscle.
    Mészáros V; Socci R; Mészáros LG
    Biochem Biophys Res Commun; 1995 May; 210(2):452-6. PubMed ID: 7755621
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Unifying mechanism for Aplysia ADP-ribosyl cyclase and CD38/NAD(+) glycohydrolases.
    Cakir-Kiefer C; Muller-Steffner H; Schuber F
    Biochem J; 2000 Jul; 349(Pt 1):203-10. PubMed ID: 10861229
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthetic study on carbocyclic analogues of cyclic ADP-ribose.
    Shirato M; Shuto S; Ueno Y; Matsuda A
    Nucleic Acids Symp Ser; 1995; (34):165-6. PubMed ID: 8841604
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cyclic ADP-ribose: a new member of a super family of signalling cyclic nucleotides.
    Lee HC
    Cell Signal; 1994 Aug; 6(6):591-600. PubMed ID: 7857763
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Submitochondrial localization of the NAD+ glycohydrolase. Implications for the role of pyridine nucleotide hydrolysis in mitochondrial calcium fluxes.
    Boyer CS; Moore GA; Moldéus P
    J Biol Chem; 1993 Feb; 268(6):4016-20. PubMed ID: 8382685
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evidence of a role for cyclic ADP-ribose in long-term synaptic depression in hippocampus.
    Reyes-Harde M; Empson R; Potter BV; Galione A; Stanton PK
    Proc Natl Acad Sci U S A; 1999 Mar; 96(7):4061-6. PubMed ID: 10097163
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cyclic ADP-ribose, the ADP-ribosyl cyclase pathway and calcium signalling.
    Galione A
    Mol Cell Endocrinol; 1994 Jan; 98(2):125-31. PubMed ID: 8143921
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [CD38 antigen (ADP-ribosyl cyclase) and secretory mechanism of insulin].
    Taminato T; Ito T; Kato H
    Nihon Rinsho; 1997 Nov; 55 Suppl():880-7. PubMed ID: 9434581
    [No Abstract]   [Full Text] [Related]  

  • 60. Structural determination of a cyclic metabolite of NAD+ with intracellular Ca2+-mobilizing activity.
    Lee HC; Walseth TF; Bratt GT; Hayes RN; Clapper DL
    J Biol Chem; 1989 Jan; 264(3):1608-15. PubMed ID: 2912976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.