These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 8527601)

  • 41. Development of calcium phosphate/sulfate biphasic cement for vital pulp therapy.
    Chang KC; Chang CC; Chen WT; Hsu CK; Lin FH; Lin CP
    Dent Mater; 2014 Dec; 30(12):e362-70. PubMed ID: 25189109
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of particle size of metastable calcium phosphates on mechanical strength of a novel self-setting bioactive calcium phosphate cement.
    Otsuka M; Matsuda Y; Suwa Y; Fox JL; Higuchi WI
    J Biomed Mater Res; 1995 Jan; 29(1):25-32. PubMed ID: 7713955
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bioactive tetracalcium phosphate/magnesium phosphate composite bone cement for bone repair.
    Liu J; Liao J; Li Y; Yang Z; Ying Q; Xie Y; Zhou A
    J Biomater Appl; 2019 Aug; 34(2):239-249. PubMed ID: 31042122
    [No Abstract]   [Full Text] [Related]  

  • 44. Development of calcium phosphate cement for rapid crystallization to apatite.
    Kon M; Miyamoto Y; Asaoka K; Ishikawa K; Lee HH
    Dent Mater J; 1998 Dec; 17(4):223-32. PubMed ID: 10219136
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Particle size effect of metastable calcium phosphates on crushing strength of self-setting bioactive calcium phosphate cement.
    Otsuka M; Matsuda Y; Suwa Y; Fox JL; Higuchi WI
    Chem Pharm Bull (Tokyo); 1993 Nov; 41(11):2055-7. PubMed ID: 8293530
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanism of the hardening process for a hydroxyapatite cement.
    Liu C; Shen W; Gu Y; Hu L
    J Biomed Mater Res; 1997 Apr; 35(1):75-80. PubMed ID: 9104699
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Incorporation of chitosan-alginate complex into injectable calcium phosphate cement system as a bone graft material.
    Lee HJ; Kim B; Padalhin AR; Lee BT
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():385-392. PubMed ID: 30423721
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of the granularity of raw materials on the hydration and hardening process of calcium phosphate cement.
    Liu C; Shao H; Chen F; Zheng H
    Biomaterials; 2003 Oct; 24(23):4103-13. PubMed ID: 12853240
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Polymer--calcium phosphate cement composites for bone substitutes.
    Mickiewicz RA; Mayes AM; Knaack D
    J Biomed Mater Res; 2002 Sep; 61(4):581-92. PubMed ID: 12115448
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of a strontium-containing hydroxyapatite bone cement.
    Guo D; Xu K; Zhao X; Han Y
    Biomaterials; 2005 Jul; 26(19):4073-83. PubMed ID: 15664634
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Combined effect of strontium and pyrophosphate on the properties of brushite cements.
    Alkhraisat MH; Mariño FT; Rodríguez CR; Jerez LB; Cabarcos EL
    Acta Biomater; 2008 May; 4(3):664-70. PubMed ID: 18206432
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Monoclinic Hydroxyapatite Nanoplates Hybrid Composite with Improved Compressive Strength, and Porosity for Bone Defect Repair: Biomimetic Synthesis and Characterization.
    Xue B; Farghaly AA; Guo Z; Zhao P; Li H; Zhou C; Li L
    J Nanosci Nanotechnol; 2016 Mar; 16(3):2254-63. PubMed ID: 27455626
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Influence of gamma and electron beam sterilization on the stability of a premixed injectable calcium phosphate cement for trauma indications.
    Murray KA; Collins MN; O'Sullivan RP; Ren G; Devine DM; Murphy A; Sadło J; O'Sullivan C; McEvoy B; Vrain O; O'Neill C; Insley G
    J Mech Behav Biomed Mater; 2018 Jan; 77():116-124. PubMed ID: 28898722
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Diametral tensile strength and compressive strength of a calcium phosphate cement: effect of applied pressure.
    Chow LC; Hirayama S; Takagi S; Parry E
    J Biomed Mater Res; 2000 Sep; 53(5):511-7. PubMed ID: 10984699
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Setting reaction and hardening of an apatitic calcium phosphate cement.
    Ginebra MP; Fernández E; De Maeyer EA; Verbeeck RM; Boltong MG; Ginebra J; Driessens FC; Planell JA
    J Dent Res; 1997 Apr; 76(4):905-12. PubMed ID: 9126187
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The in vitro and in vivo indomethacin release from self-setting bioactive glass bone cement.
    Otsuka M; Nakahigashi Y; Matsuda Y; Kokubo T; Yoshihara S; Fujita H; Nakamura T
    Biomed Mater Eng; 1997; 7(5):291-302. PubMed ID: 9457380
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of dicalcium phosphate dihydrate cements prepared using a novel hydroxyapatite-based formulation.
    Alge DL; Santa Cruz G; Goebel WS; Chu TM
    Biomed Mater; 2009 Apr; 4(2):025016. PubMed ID: 19349655
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Compositional changes of a dicalcium phosphate dihydrate cement after implantation in sheep.
    Bohner M; Theiss F; Apelt D; Hirsiger W; Houriet R; Rizzoli G; Gnos E; Frei C; Auer JA; von Rechenberg B
    Biomaterials; 2003 Sep; 24(20):3463-74. PubMed ID: 12809775
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In vivo study of calcium phosphate cements: implantation of an alpha-tricalcium phosphate/dicalcium phosphate dibasic/tetracalcium phosphate monoxide cement paste.
    Kurashina K; Kurita H; Hirano M; Kotani A; Klein CP; de Groot K
    Biomaterials; 1997 Apr; 18(7):539-43. PubMed ID: 9105593
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electrospun Nanofibrous P(DLLA-CL) Balloons as Calcium Phosphate Cement Filled Containers for Bone Repair: in Vitro and in Vivo Studies.
    Liu X; Wei D; Zhong J; Ma M; Zhou J; Peng X; Ye Y; Sun G; He D
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18540-52. PubMed ID: 26258872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.