These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 8527656)

  • 1. Multiple residues specify external tetraethylammonium blockade in voltage-gated potassium channels.
    Pascual JM; Shieh CC; Kirsch GE; Brown AM
    Biophys J; 1995 Aug; 69(2):428-34. PubMed ID: 8527656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutational analysis of ion conduction and drug binding sites in the inner mouth of voltage-gated K+ channels.
    Shieh CC; Kirsch GE
    Biophys J; 1994 Dec; 67(6):2316-25. PubMed ID: 7696472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The P-region and S6 of Kv3.1 contribute to the formation of the ion conduction pathway.
    Aiyar J; Nguyen AN; Chandy KG; Grissmer S
    Biophys J; 1994 Dec; 67(6):2261-4. PubMed ID: 7696467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. External tetraethylammonium as a molecular caliper for sensing the shape of the outer vestibule of potassium channels.
    Bretschneider F; Wrisch A; Lehmann-Horn F; Grissmer S
    Biophys J; 1999 May; 76(5):2351-60. PubMed ID: 10233054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histidine substitution identifies a surface position and confers Cs+ selectivity on a K+ pore.
    De Biasi M; Drewe JA; Kirsch GE; Brown AM
    Biophys J; 1993 Sep; 65(3):1235-42. PubMed ID: 8241404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional role of a conserved aspartate in the external mouth of voltage-gated potassium channels.
    Kirsch GE; Pascual JM; Shieh CC
    Biophys J; 1995 May; 68(5):1804-13. PubMed ID: 7612822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tetraethylammonium block of the BNC1 channel.
    Adams CM; Price MP; Snyder PM; Welsh MJ
    Biophys J; 1999 Mar; 76(3):1377-83. PubMed ID: 10049320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MinK endows the I(Ks) potassium channel pore with sensitivity to internal tetraethylammonium.
    Sesti F; Tai KK; Goldstein SA
    Biophys J; 2000 Sep; 79(3):1369-78. PubMed ID: 10968999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophobic mutations alter the movement of Mg2+ in the pore of voltage-gated potassium channels.
    Harris RE; Isacoff EY
    Biophys J; 1996 Jul; 71(1):209-19. PubMed ID: 8804604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pore mutations in Shaker K+ channels distinguish between the sites of tetraethylammonium blockade and C-type inactivation.
    Molina A; Castellano AG; López-Barneo J
    J Physiol; 1997 Mar; 499 ( Pt 2)(Pt 2):361-7. PubMed ID: 9080366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction between tetraethylammonium and amino acid residues in the pore of cloned voltage-dependent potassium channels.
    Kavanaugh MP; Varnum MD; Osborne PB; Christie MJ; Busch AE; Adelman JP; North RA
    J Biol Chem; 1991 Apr; 266(12):7583-7. PubMed ID: 2019588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repulsion between tetraethylammonium ions in cloned voltage-gated potassium channels.
    Newland CF; Adelman JP; Tempel BL; Almers W
    Neuron; 1992 May; 8(5):975-82. PubMed ID: 1586488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterns of internal and external tetraethylammonium block in four homologous K+ channels.
    Taglialatela M; Vandongen AM; Drewe JA; Joho RH; Brown AM; Kirsch GE
    Mol Pharmacol; 1991 Aug; 40(2):299-307. PubMed ID: 1875913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of K+/Rb+ selectivity and internal TEA blockade by mutations at a single site in K+ pores.
    Taglialatela M; Drewe JA; Kirsch GE; De Biasi M; Hartmann HA; Brown AM
    Pflugers Arch; 1993 Apr; 423(1-2):104-12. PubMed ID: 7683786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple subunits of a voltage-dependent potassium channel contribute to the binding site for tetraethylammonium.
    Kavanaugh MP; Hurst RS; Yakel J; Varnum MD; Adelman JP; North RA
    Neuron; 1992 Mar; 8(3):493-7. PubMed ID: 1550674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel.
    Yellen G; Jurman ME; Abramson T; MacKinnon R
    Science; 1991 Feb; 251(4996):939-42. PubMed ID: 2000494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. S3b amino acid residues do not shuttle across the bilayer in voltage-dependent Shaker K+ channels.
    Gonzalez C; Morera FJ; Rosenmann E; Alvarez O; Latorre R
    Proc Natl Acad Sci U S A; 2005 Apr; 102(14):5020-5. PubMed ID: 15774578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased resistance to extracellular cation block by mutation of the pore domain of the Arabidopsis inward-rectifying K+ channel KAT1.
    Ichida AM; Schroeder JI
    J Membr Biol; 1996 May; 151(1):53-62. PubMed ID: 8661494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels.
    MacKinnon R; Yellen G
    Science; 1990 Oct; 250(4978):276-9. PubMed ID: 2218530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation and pharmacological properties of sqKv1A homotetramers in Xenopus oocytes cannot account for behavior of the squid "delayed rectifier" K(+) conductance.
    Jerng HH; Gilly WF
    Biophys J; 2002 Jun; 82(6):3022-36. PubMed ID: 12023225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.