These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 8527665)

  • 1. Fluorescence of membrane-bound tryptophan octyl ester: a model for studying intrinsic fluorescence of protein-membrane interactions.
    Ladokhin AS; Holloway PW
    Biophys J; 1995 Aug; 69(2):506-17. PubMed ID: 8527665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tryptophan octyl ester in detergent micelles of dodecylmaltoside: fluorescence properties and quenching by brominated detergent analogs.
    de Foresta B; Gallay J; Sopkova J; Champeil P; Vincent M
    Biophys J; 1999 Dec; 77(6):3071-84. PubMed ID: 10585929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionization, partitioning, and dynamics of tryptophan octyl ester: implications for membrane-bound tryptophan residues.
    Chattopadhyay A; Mukherjee S; Rukmini R; Rawat SS; Sudha S
    Biophys J; 1997 Aug; 73(2):839-49. PubMed ID: 9251800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of lipid exposure of tryptophan residues in membrane peptides and proteins.
    Ladokhin AS
    Anal Biochem; 1999 Dec; 276(1):65-71. PubMed ID: 10585745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization and environment of tryptophans in soluble and membrane-bound states of a pore-forming toxin from Staphylococcus aureus.
    Raja SM; Rawat SS; Chattopadhyay A; Lala AK
    Biophys J; 1999 Mar; 76(3):1469-79. PubMed ID: 10049328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The polar headgroup of the detergent governs the accessibility to water of tryptophan octyl ester in host micelles.
    Tortech L; Jaxel C; Vincent M; Gallay J; de Foresta B
    Biochim Biophys Acta; 2001 Sep; 1514(1):76-86. PubMed ID: 11513806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of protein and peptide penetration into membranes by depth-dependent fluorescence quenching: theoretical considerations.
    Ladokhin AS
    Biophys J; 1999 Feb; 76(2):946-55. PubMed ID: 9929496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of depth-dependent fluorescence quenching in membranes by molecular dynamics simulation of tryptophan octyl ester in POPC bilayer.
    Kyrychenko A; Tobias DJ; Ladokhin AS
    J Phys Chem B; 2013 May; 117(17):4770-8. PubMed ID: 23528135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of melittin with membrane cholesterol: a fluorescence approach.
    Raghuraman H; Chattopadhyay A
    Biophys J; 2004 Oct; 87(4):2419-32. PubMed ID: 15454440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of structural transition of the host assembly on dynamics of a membrane-bound tryptophan analogue.
    Arora-Sharawat A; Chattopadhyay A
    Biophys Chem; 2007 Sep; 129(2-3):172-80. PubMed ID: 17590497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orientation of LamB signal peptides in bilayers: influence of lipid probes on peptide binding and interpretation of fluorescence quenching data.
    Voglino L; Simon SA; McIntosh TJ
    Biochemistry; 1999 Jun; 38(23):7509-16. PubMed ID: 10360948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determining the membrane topology of peptides by fluorescence quenching.
    Wimley WC; White SH
    Biochemistry; 2000 Jan; 39(1):161-70. PubMed ID: 10625491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of reverse micellar environments on the fluorescence emission properties of tryptophan octyl ester.
    Sengupta B; Sengupta PK
    Biochem Biophys Res Commun; 2000 Oct; 277(1):13-9. PubMed ID: 11027632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence study of a mutant cytochrome b5 with a single tryptophan in the membrane-binding domain.
    Ladokhin AS; Wang L; Steggles AW; Holloway PW
    Biochemistry; 1991 Oct; 30(42):10200-6. PubMed ID: 1931948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence quenching of cytochrome b5 in vesicles with an asymmetric transbilayer distribution of brominated phosphatidylcholine.
    Everett J; Zlotnick A; Tennyson J; Holloway PW
    J Biol Chem; 1986 May; 261(15):6725-9. PubMed ID: 3700412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific tryptophan fluorescence spectroscopy as a probe of membrane peptide structure and dynamics.
    Clayton AH; Sawyer WH
    Eur Biophys J; 2002 Mar; 31(1):9-13. PubMed ID: 12046900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence quenching study of melittin-membrane interactions.
    Ladokhin AS; Holloway PW
    Ukr Biokhim Zh (1978); 1995; 67(2):34-40. PubMed ID: 8592783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring Membrane Penetration Depths and Conformational Changes in Membrane Peptides and Proteins.
    Brahma R; Raghuraman H
    J Membr Biol; 2022 Oct; 255(4-5):469-483. PubMed ID: 35274157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Location of diphenylhexatriene (DPH) and its derivatives within membranes: comparison of different fluorescence quenching analyses of membrane depth.
    Kaiser RD; London E
    Biochemistry; 1998 Jun; 37(22):8180-90. PubMed ID: 9609714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of membrane-contacting loops of the catalytic domain of cytochrome P450 2C2 by tryptophan fluorescence scanning.
    Ozalp C; Szczesna-Skorupa E; Kemper B
    Biochemistry; 2006 Apr; 45(14):4629-37. PubMed ID: 16584198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.