These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 8527682)

  • 1. Subnanosecond polarized fluorescence photobleaching: rotational diffusion of acetylcholine receptors on developing muscle cells.
    Yuan Y; Axelrod D
    Biophys J; 1995 Aug; 69(2):690-700. PubMed ID: 8527682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rotational diffusion of acetylcholine receptors on cultured rat myotubes.
    Velez M; Barald KF; Axelrod D
    J Cell Biol; 1990 Jun; 110(6):2049-59. PubMed ID: 2351693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polarized fluorescence photobleaching recovery for measuring rotational diffusion in solutions and membranes.
    Velez M; Axelrod D
    Biophys J; 1988 Apr; 53(4):575-91. PubMed ID: 3382712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-lapse total internal reflection fluorescence video of acetylcholine receptor cluster formation on myotubes.
    Wang MD; Axelrod D
    Dev Dyn; 1994 Sep; 201(1):29-40. PubMed ID: 7803845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mobility of extrajunctional acetylcholine receptors on denervated adult muscle fibers.
    Stya M; Axelrod D
    J Neurosci; 1984 Jan; 4(1):70-4. PubMed ID: 6693947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetylcholine receptor clusters are associated with nuclei in rat myotubes.
    Bruner JM; Bursztajn S
    Dev Biol; 1986 May; 115(1):35-43. PubMed ID: 2422072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rotational dynamics of colloidal spheres probed with fluorescence recovery after photobleaching.
    Lettinga MP; Koenderink GH; Kuipers BW; Bessels E; Philipse AP
    J Chem Phys; 2004 Mar; 120(9):4517-29. PubMed ID: 15268620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microtubules and the formation of acetylcholine receptor clusters in chick embryonic muscle cells.
    Connolly JA; Oldfin BV
    Eur J Cell Biol; 1985 Nov; 39(1):173-8. PubMed ID: 2867906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of agrin and laminin on acetylcholine receptor dynamics in vitro.
    Bruneau EG; Macpherson PC; Goldman D; Hume RI; Akaaboune M
    Dev Biol; 2005 Dec; 288(1):248-58. PubMed ID: 16256100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lateral motion of fluorescently labeled acetylcholine receptors in membranes of developing muscle fibers.
    Axelrod D; Ravdin P; Koppel DE; Schlessinger J; Webb WW; Elson EL; Podleski TR
    Proc Natl Acad Sci U S A; 1976 Dec; 73(12):4594-8. PubMed ID: 1070010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A polarized photobleaching study of DNA reorientation in agarose gels.
    Scalettar BA; Selvin PR; Axelrod D; Klein MP; Hearst JE
    Biochemistry; 1990 May; 29(20):4790-8. PubMed ID: 2364059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of calpains in the destabilization of the acetylcholine receptor clusters in rat myotubes.
    Kim S; Nelson PG
    J Neurobiol; 2000 Jan; 42(1):22-32. PubMed ID: 10623898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunogold surface replica study on the distribution of acetylcholine receptors in cultured rat myotubes.
    Veltel D; Robenek H
    J Histochem Cytochem; 1988 Oct; 36(10):1295-303. PubMed ID: 3418108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of acetylcholine receptor clusters in chick myotubes: migration or new insertion?
    Dubinsky JM; Loftus DJ; Fischbach GD; Elson EL
    J Cell Biol; 1989 Oct; 109(4 Pt 1):1733-43. PubMed ID: 2793937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tyrosine phosphatases such as SHP-2 act in a balance with Src-family kinases in stabilization of postsynaptic clusters of acetylcholine receptors.
    Camilleri AA; Willmann R; Sadasivam G; Lin S; Rüegg MA; Gesemann M; Fuhrer C
    BMC Neurosci; 2007 Jul; 8():46. PubMed ID: 17605785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotational dynamics of type I Fc epsilon receptors on individually-selected rat mast cells studied by polarized fluorescence depletion.
    Rahman NA; Pecht I; Roess DA; Barisas BG
    Biophys J; 1992 Feb; 61(2):334-46. PubMed ID: 1547323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mobility and detergent extractability of acetylcholine receptors on cultured rat myotubes: a correlation.
    Stya M; Axelrod D
    J Cell Biol; 1983 Jul; 97(1):48-51. PubMed ID: 6863395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential responses of L5 and rat primary muscle cells to factors in rat brain extract.
    Neugebauer K; Salpeter MM; Podleski TR
    Brain Res; 1985 Oct; 346(1):58-69. PubMed ID: 4052771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The orientation of eosin-5-maleimide on human erythrocyte band 3 measured by fluorescence polarization microscopy.
    Blackman SM; Cobb CE; Beth AH; Piston DW
    Biophys J; 1996 Jul; 71(1):194-208. PubMed ID: 8804603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of myasthenic immunoglobulins and cholinergic agonists on acetylcholine receptors of rat myotubes.
    Ashizawa T; Elias SB; Appel SH
    Ann Neurol; 1982 Jan; 11(1):22-7. PubMed ID: 6277235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.