These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. A physiological view of the central and peripheral mechanisms that regulate the release of catecholamines at the adrenal medulla. de Diego AM; Gandía L; García AG Acta Physiol (Oxf); 2008 Feb; 192(2):287-301. PubMed ID: 18005392 [TBL] [Abstract][Full Text] [Related]
4. Neurotransmitter release from bovine adrenal chromaffin cells is modulated by capacitative Ca(2+)entry driven by depleted internal Ca(2+)stores. Zerbes M; Clark CL; Powis DA Cell Calcium; 2001 Jan; 29(1):49-58. PubMed ID: 11133355 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of exocytosis by intracellularly applied antibodies against a chromaffin granule-binding protein. Schweizer FE; Schäfer T; Tapparelli C; Grob M; Karli UO; Heumann R; Thoenen H; Bookman RJ; Burger MM Nature; 1989 Jun; 339(6227):709-12. PubMed ID: 2765027 [TBL] [Abstract][Full Text] [Related]
7. Mechanisms of exocytosis. Sugita S Acta Physiol (Oxf); 2008 Feb; 192(2):185-93. PubMed ID: 18005396 [TBL] [Abstract][Full Text] [Related]
8. Rab3A delayed catecholamine secretion from bovine adrenal chromaffin cells. Lin CG; Pan CY; Kao LS Biochem Biophys Res Commun; 1996 Apr; 221(3):675-81. PubMed ID: 8630020 [TBL] [Abstract][Full Text] [Related]
9. Granule matrix property and rapid "kiss-and-run" exocytosis contribute to the different kinetics of catecholamine release from carotid glomus and adrenal chromaffin cells at matched quantal size. Wang N; Lee AK; Yan L; Simpson MR; Tse A; Tse FW Can J Physiol Pharmacol; 2012 Jun; 90(6):791-801. PubMed ID: 22506963 [TBL] [Abstract][Full Text] [Related]
10. Calcium signalling and the triggering of secretion in adrenal chromaffin cells. Cheek TR Pharmacol Ther; 1991 Nov; 52(2):173-89. PubMed ID: 1818335 [TBL] [Abstract][Full Text] [Related]
15. Linopirdine modulates calcium signaling and stimulus-secretion coupling in adrenal chromaffin cells by targeting M-type K+ channels and nicotinic acetylcholine receptors. Dzhura EV; He W; Currie KP J Pharmacol Exp Ther; 2006 Mar; 316(3):1165-74. PubMed ID: 16280412 [TBL] [Abstract][Full Text] [Related]
16. CCCP enhances catecholamine release from the perfused rat adrenal medulla. Lim DY; Park HG; Miwa S Auton Neurosci; 2006 Jul; 128(1-2):37-47. PubMed ID: 16461015 [TBL] [Abstract][Full Text] [Related]
17. Catecholamine release from the adrenal medulla. Perlman RL; Chalfie M Clin Endocrinol Metab; 1977 Nov; 6(3):551-76. PubMed ID: 338214 [TBL] [Abstract][Full Text] [Related]
18. [Participation of synaptotagmin in release of catecholamines in rat adrenal chromaffin cells]. Pochyniuk OV; Zaïka OL; Sadovyĭ OV; Iavors'ka OM; Kostiuk PH; Luk'ianets OO Fiziol Zh (1994); 2010; 56(6):31-8. PubMed ID: 21469315 [TBL] [Abstract][Full Text] [Related]
19. Further characterization of the aggregation and fusion of chromaffin granules by synexin as a model for compound exocytosis. Creutz CE; Scott JH; Pazoles CJ; Pollard HB J Cell Biochem; 1982; 18(1):87-97. PubMed ID: 6121822 [TBL] [Abstract][Full Text] [Related]
20. L-type calcium channels in adrenal chromaffin cells: role in pace-making and secretion. Marcantoni A; Baldelli P; Hernandez-Guijo JM; Comunanza V; Carabelli V; Carbone E Cell Calcium; 2007; 42(4-5):397-408. PubMed ID: 17561252 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]