These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 8527869)
1. Growth of nonnecrotic tumors in the presence and absence of inhibitors. Byrne HM; Chaplain MA Math Biosci; 1995 Dec; 130(2):151-81. PubMed ID: 8527869 [TBL] [Abstract][Full Text] [Related]
2. Growth of necrotic tumors in the presence and absence of inhibitors. Byrne HM; Chaplin MA Math Biosci; 1996 Jul; 135(2):187-216. PubMed ID: 8768220 [TBL] [Abstract][Full Text] [Related]
3. Equilibrium model of a vascularized spherical carcinoma with central necrosis--some properties of the solution. Adam JA; Noren RD J Math Biol; 1993; 31(7):735-45. PubMed ID: 8245732 [TBL] [Abstract][Full Text] [Related]
4. Mathematical models of tumor growth. IV. Effects of a necrotic core. Adam JA; Maggelakis SA Math Biosci; 1989 Nov; 97(1):121-36. PubMed ID: 2520203 [TBL] [Abstract][Full Text] [Related]
5. On the concentration profile of a growth inhibitory factor in multicell spheroids. Chaplain MA; Britton NF Math Biosci; 1993 Jun; 115(2):233-43. PubMed ID: 8507991 [TBL] [Abstract][Full Text] [Related]
6. The importance of intercellular adhesion in the development of carcinomas. Byrne HM IMA J Math Appl Med Biol; 1997 Dec; 14(4):305-23. PubMed ID: 9415997 [TBL] [Abstract][Full Text] [Related]
7. Analysis of a mathematical model for the growth of tumors under the action of external inhibitors. Cui S J Math Biol; 2002 May; 44(5):395-426. PubMed ID: 12021982 [TBL] [Abstract][Full Text] [Related]
8. Analysis of a mathematical model for the growth of tumors. Friedman A; Reitich F J Math Biol; 1999 Mar; 38(3):262-84. PubMed ID: 10220926 [TBL] [Abstract][Full Text] [Related]
9. The hunt for endogenous growth-inhibitory and/or tumor suppression factors: their role in physiological and pathological growth regulation. Iversen OH Adv Cancer Res; 1991; 57():413-53. PubMed ID: 1950707 [No Abstract] [Full Text] [Related]
10. Asymmetric growth of models of avascular solid tumours: exploiting symmetries. Byrne H; Matthews P IMA J Math Appl Med Biol; 2002 Mar; 19(1):1-29. PubMed ID: 12408222 [TBL] [Abstract][Full Text] [Related]
11. Steady-state analysis of necrotic core formation for solid avascular tumors with time delays in regulatory apoptosis. Zhang F; Xu S Comput Math Methods Med; 2014; 2014():467158. PubMed ID: 25667597 [TBL] [Abstract][Full Text] [Related]
12. The effect of time delays on the dynamics of avascular tumor growth. Byrne HM Math Biosci; 1997 Sep; 144(2):83-117. PubMed ID: 9258002 [TBL] [Abstract][Full Text] [Related]
13. A singular dispersion relation arising in a caricature of a model for morphogenesis. Britton NF J Math Biol; 1988; 26(4):387-403. PubMed ID: 3199041 [TBL] [Abstract][Full Text] [Related]
14. Oscillating spatial structures of a tissue. Tarumi K; Schwegler H J Theor Biol; 1983 Apr; 101(3):373-86. PubMed ID: 6887948 [TBL] [Abstract][Full Text] [Related]
15. Analysis of a mathematical model of the effect of inhibitors on the growth of tumors. Cui S; Friedman A Math Biosci; 2000 Apr; 164(2):103-37. PubMed ID: 10748282 [TBL] [Abstract][Full Text] [Related]
16. [Autowaves in a model of growth of an invasive tumor]. Kolobov AV; Gubernov VV; Polezhaev AA Biofizika; 2009; 54(2):334-42. PubMed ID: 19402546 [TBL] [Abstract][Full Text] [Related]
17. Progress towards a unified theory of the mechanisms of carcinogenesis: role of cell cycle restriction points. Hull LA Med Hypotheses; 1981 Feb; 7(2):187-200. PubMed ID: 6163954 [TBL] [Abstract][Full Text] [Related]