These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 8528086)
1. A preference-based free-energy parameterization of enzyme-inhibitor binding. Applications to HIV-1-protease inhibitor design. Wallqvist A; Jernigan RL; Covell DG Protein Sci; 1995 Sep; 4(9):1881-903. PubMed ID: 8528086 [TBL] [Abstract][Full Text] [Related]
2. Energy calculations and analysis of HIV-1 protease-inhibitor crystal structures. Gustchina A; Sansom C; Prevost M; Richelle J; Wodak SY; Wlodawer A; Weber IT Protein Eng; 1994 Mar; 7(3):309-17. PubMed ID: 8177879 [TBL] [Abstract][Full Text] [Related]
3. Neutron crystallography used to identify targets to improve HIV-1 protease inhibitor. Hill R Future Med Chem; 2013 Oct; 5(15):1705. PubMed ID: 24144407 [No Abstract] [Full Text] [Related]
4. X-ray crystallographic studies of a series of penicillin-derived asymmetric inhibitors of HIV-1 protease. Jhoti H; Singh OM; Weir MP; Cooke R; Murray-Rust P; Wonacott A Biochemistry; 1994 Jul; 33(28):8417-27. PubMed ID: 8031777 [TBL] [Abstract][Full Text] [Related]
5. HIV-1 protease flaps spontaneously close to the correct structure in simulations following manual placement of an inhibitor into the open state. Hornak V; Okur A; Rizzo RC; Simmerling C J Am Chem Soc; 2006 Mar; 128(9):2812-3. PubMed ID: 16506755 [TBL] [Abstract][Full Text] [Related]
6. Empirical free energy calculations of human immunodeficiency virus type 1 protease crystallographic complexes. II. Knowledge-based ligand-protein interaction potentials applied to thermodynamic analysis of hydrophobic mutations. Verkhivker GM Pac Symp Biocomput; 1996; ():638-52. PubMed ID: 9390264 [TBL] [Abstract][Full Text] [Related]
7. Free energy perturbation studies on binding of A-74704 and its diester analog to HIV-1 protease. Rao BG; Murcko MA Protein Eng; 1996 Sep; 9(9):767-71. PubMed ID: 8888142 [TBL] [Abstract][Full Text] [Related]
8. A contribution to the drug resistance mechanism of darunavir, amprenavir, indinavir, and saquinavir complexes with HIV-1 protease due to flap mutation I50V: a systematic MM-PBSA and thermodynamic integration study. Leonis G; Steinbrecher T; Papadopoulos MG J Chem Inf Model; 2013 Aug; 53(8):2141-53. PubMed ID: 23834142 [TBL] [Abstract][Full Text] [Related]
9. Binding free energy contributions of interfacial waters in HIV-1 protease/inhibitor complexes. Lu Y; Yang CY; Wang S J Am Chem Soc; 2006 Sep; 128(36):11830-9. PubMed ID: 16953623 [TBL] [Abstract][Full Text] [Related]
10. Efficiency of a second-generation HIV-1 protease inhibitor studied by molecular dynamics and absolute binding free energy calculations. Lepsík M; Kríz Z; Havlas Z Proteins; 2004 Nov; 57(2):279-93. PubMed ID: 15340915 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of a tethered dimer of HIV-1 proteinase complexed with an inhibitor. Bhat TN; Baldwin ET; Liu B; Cheng YS; Erickson JW Nat Struct Biol; 1994 Aug; 1(8):552-6. PubMed ID: 7664084 [TBL] [Abstract][Full Text] [Related]
12. Design of symmetry-based, peptidomimetic inhibitors of human immunodeficiency virus protease. Kempf DJ Methods Enzymol; 1994; 241():334-54. PubMed ID: 7854187 [No Abstract] [Full Text] [Related]
13. Interpreting trends in the binding of cyclic ureas to HIV-1 protease. Mardis KL; Luo R; Gilson MK J Mol Biol; 2001 Jun; 309(2):507-17. PubMed ID: 11371168 [TBL] [Abstract][Full Text] [Related]
14. How inaccuracies in protein structure models affect estimates of protein-ligand interactions: computational analysis of HIV-I protease inhibitor binding. Thorsteinsdottir HB; Schwede T; Zoete V; Meuwly M Proteins; 2006 Nov; 65(2):407-23. PubMed ID: 16941468 [TBL] [Abstract][Full Text] [Related]
15. Crystal structure of an in vivo HIV-1 protease mutant in complex with saquinavir: insights into the mechanisms of drug resistance. Hong L; Zhang XC; Hartsuck JA; Tang J Protein Sci; 2000 Oct; 9(10):1898-904. PubMed ID: 11106162 [TBL] [Abstract][Full Text] [Related]
16. Free energy component analysis for drug design: a case study of HIV-1 protease-inhibitor binding. Kalra P; Reddy TV; Jayaram B J Med Chem; 2001 Dec; 44(25):4325-38. PubMed ID: 11728180 [TBL] [Abstract][Full Text] [Related]
17. Enthalpy-Entropy Compensation upon Molecular Conformational Changes. Ahmad M; Helms V; Lengauer T; Kalinina OV J Chem Theory Comput; 2015 Apr; 11(4):1410-8. PubMed ID: 26574352 [TBL] [Abstract][Full Text] [Related]
18. Estimation of binding free energies for HIV proteinase inhibitors by molecular dynamics simulations. Hansson T; Aqvist J Protein Eng; 1995 Nov; 8(11):1137-44. PubMed ID: 8819979 [TBL] [Abstract][Full Text] [Related]
19. A structural and thermodynamic escape mechanism from a drug resistant mutation of the HIV-1 protease. Vega S; Kang LW; Velazquez-Campoy A; Kiso Y; Amzel LM; Freire E Proteins; 2004 May; 55(3):594-602. PubMed ID: 15103623 [TBL] [Abstract][Full Text] [Related]
20. Design, synthesis and biological evaluation of HIV-1 protease inhibitors with morpholine derivatives as P2 ligands in combination with cyclopropyl as P1' ligand. Dou Y; Zhu M; Dong B; Wang JX; Zhang GN; Zhang F; Wang YC Bioorg Med Chem Lett; 2020 Apr; 30(7):127019. PubMed ID: 32057582 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]