These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Theory of electroporation of planar bilayer membranes: predictions of the aqueous area, change in capacitance, and pore-pore separation. Freeman SA; Wang MA; Weaver JC Biophys J; 1994 Jul; 67(1):42-56. PubMed ID: 7919016 [TBL] [Abstract][Full Text] [Related]
5. High electrical field effects on cell membranes. Pliquett U; Joshi RP; Sridhara V; Schoenbach KH Bioelectrochemistry; 2007 May; 70(2):275-82. PubMed ID: 17123870 [TBL] [Abstract][Full Text] [Related]
6. Electroporation of cell membranes: a review. Ho SY; Mittal GS Crit Rev Biotechnol; 1996; 16(4):349-62. PubMed ID: 8989868 [TBL] [Abstract][Full Text] [Related]
7. Investigating membrane breakdown of neuronal cells exposed to nonuniform electric fields by finite-element modeling and experiments. Heida T; Wagenaar JB; Rutten WL; Marani E IEEE Trans Biomed Eng; 2002 Oct; 49(10):1195-203. PubMed ID: 12374345 [TBL] [Abstract][Full Text] [Related]
8. Theoretical and experimental analysis of conductivity, ion diffusion and molecular transport during cell electroporation--relation between short-lived and long-lived pores. Pavlin M; Miklavcic D Bioelectrochemistry; 2008 Nov; 74(1):38-46. PubMed ID: 18499534 [TBL] [Abstract][Full Text] [Related]
9. A time-dependent numerical model of transmembrane voltage inducement and electroporation of irregularly shaped cells. Pucihar G; Miklavcic D; Kotnik T IEEE Trans Biomed Eng; 2009 May; 56(5):1491-501. PubMed ID: 19203876 [TBL] [Abstract][Full Text] [Related]
10. Electroporation of a lipid bilayer as a chemical reaction. Bier M; Gowrishankar TR; Chen W; Lee RC Bioelectromagnetics; 2004 Dec; 25(8):634-7. PubMed ID: 15515028 [TBL] [Abstract][Full Text] [Related]
11. Transmembrane electrical potential of excitable membranes: a pore analysis influence of surface charges and surface dipoles. Gavach C J Physiol (Paris); 1981 May; 77(9):1029-33. PubMed ID: 6286954 [TBL] [Abstract][Full Text] [Related]
12. Determination of the lipid bilayer breakdown voltage by means of linear rising signal. Kramar P; Miklavcic D; Lebar AM Bioelectrochemistry; 2007 Jan; 70(1):23-7. PubMed ID: 16713748 [TBL] [Abstract][Full Text] [Related]
13. The effect of resting transmembrane voltage on cell electropermeabilization: a numerical analysis. Valic B; Pavlin M; Miklavcic D Bioelectrochemistry; 2004 Jun; 63(1-2):311-5. PubMed ID: 15110294 [TBL] [Abstract][Full Text] [Related]
15. Voltage-dependent energetics of alamethicin monomers in the membrane. Mottamal M; Lazaridis T Biophys Chem; 2006 Jun; 122(1):50-7. PubMed ID: 16542770 [TBL] [Abstract][Full Text] [Related]
16. Membrane electroporation: The absolute rate equation and nanosecond time scale pore creation. Vasilkoski Z; Esser AT; Gowrishankar TR; Weaver JC Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021904. PubMed ID: 17025469 [TBL] [Abstract][Full Text] [Related]
17. Local temperature rises influence in vivo electroporation pore development: a numerical stratum corneum lipid phase transition model. Becker SM; Kuznetsov AV J Biomech Eng; 2007 Oct; 129(5):712-21. PubMed ID: 17887897 [TBL] [Abstract][Full Text] [Related]
18. Kinetics of pore disappearance in a cell after electroporation. Saulis G Biomed Sci Instrum; 1999; 35():409-14. PubMed ID: 11143387 [TBL] [Abstract][Full Text] [Related]