These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 8528460)

  • 21. Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning.
    Haber SN; Kim KS; Mailly P; Calzavara R
    J Neurosci; 2006 Aug; 26(32):8368-76. PubMed ID: 16899732
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence for Mediodorsal Thalamus and Prefrontal Cortex Interactions during Cognition in Macaques.
    Browning PG; Chakraborty S; Mitchell AS
    Cereb Cortex; 2015 Nov; 25(11):4519-34. PubMed ID: 25979086
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Orbitofrontal cortex neurons: role in olfactory and visual association learning.
    Rolls ET; Critchley HD; Mason R; Wakeman EA
    J Neurophysiol; 1996 May; 75(5):1970-81. PubMed ID: 8734596
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of selective amygdala, orbital frontal cortex or hippocampal formation lesions on reward assessment in nonhuman primates.
    Machado CJ; Bachevalier J
    Eur J Neurosci; 2007 May; 25(9):2885-904. PubMed ID: 17561849
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional interaction between the dorsal hippocampus and the striatum in visual discrimination learning.
    Fidalgo C; Conejo NM; González-Pardo H; Arias JL
    J Neurosci Res; 2012 Mar; 90(3):715-20. PubMed ID: 22012685
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction of the amygdala with the frontal lobe in reward memory.
    Gaffan D; Murray EA; Fabre-Thorpe M
    Eur J Neurosci; 1993 Jul; 5(7):968-75. PubMed ID: 8281307
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Amygdalar interaction with the mediodorsal nucleus of the thalamus and the ventromedial prefrontal cortex in stimulus-reward associative learning in the monkey.
    Gaffan D; Murray EA
    J Neurosci; 1990 Nov; 10(11):3479-93. PubMed ID: 2230939
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Basal ganglia and processing of cortical information: functional interactions between trans-striatal and trans-subthalamic circuits in the substantia nigra pars reticulata.
    Kolomiets BP; Deniau JM; Glowinski J; Thierry AM
    Neuroscience; 2003; 117(4):931-8. PubMed ID: 12654344
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Parallel processing of information about location in the amygdala, entorhinal cortex and hippocampus.
    Gaskin S; White NM
    Hippocampus; 2013 Nov; 23(11):1075-83. PubMed ID: 23929819
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Olfactory-visual associative learning in monkeys depends on intrahemispheric olfactory-visual interaction.
    Parker A; Gaffan D
    Behav Neurosci; 1995 Dec; 109(6):1045-51. PubMed ID: 8748955
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cortical afferents to behaviorally defined regions of the inferior temporal and parahippocampal gyri as demonstrated by WGA-HRP.
    Martin-Elkins CL; Horel JA
    J Comp Neurol; 1992 Jul; 321(2):177-92. PubMed ID: 1380012
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hippocampus and the blood supply to TE: parahippocampal pial section impairs visual discrimination learning in monkeys.
    Gaffan D; Lim C
    Exp Brain Res; 1991; 87(1):227-31. PubMed ID: 1756830
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heterarchical reinforcement-learning model for integration of multiple cortico-striatal loops: fMRI examination in stimulus-action-reward association learning.
    Haruno M; Kawato M
    Neural Netw; 2006 Oct; 19(8):1242-54. PubMed ID: 16987637
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Visual discrimination in the absence of visual cortex.
    Goldstein LH; Oakley DA
    Behav Brain Res; 1987 Jun; 24(3):181-93. PubMed ID: 3606801
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Striatal activity topographically reflects cortical activity.
    Peters AJ; Fabre JMJ; Steinmetz NA; Harris KD; Carandini M
    Nature; 2021 Mar; 591(7850):420-425. PubMed ID: 33473213
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of learning-related neuronal activity in the dorsal premotor cortex and striatum.
    Brasted PJ; Wise SP
    Eur J Neurosci; 2004 Feb; 19(3):721-40. PubMed ID: 14984423
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interocular transfer of reversed and nonreversed discrimination via the anterior commissure in monkeys.
    Sullivan MV; Hamilton CR
    Physiol Behav; 1973 Feb; 10(2):355-9. PubMed ID: 4196644
    [No Abstract]   [Full Text] [Related]  

  • 38. Enhanced spatial discrimination learning in rats following 5,7-DHT-induced serotonergic deafferentation of the hippocampus.
    Altman HJ; Normile HJ; Galloway MP; Ramirez A; Azmitia EC
    Brain Res; 1990 Jun; 518(1-2):61-6. PubMed ID: 1697213
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Limbic lesions and the problem of stimulus--reinforcement associations.
    Jones B; Mishkin M
    Exp Neurol; 1972 Aug; 36(2):362-77. PubMed ID: 4626489
    [No Abstract]   [Full Text] [Related]  

  • 40. Contribution of the retrosplenial cortex to temporal discrimination learning.
    Todd TP; Meyer HC; Bucci DJ
    Hippocampus; 2015 Feb; 25(2):137-41. PubMed ID: 25348829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.