These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 8528490)

  • 1. Determination of impulse conduction characteristics at a microscopic scale in patterned growth heart cell cultures using multiple site optical recording of transmembrane voltage.
    Rohr S
    J Cardiovasc Electrophysiol; 1995 Jul; 6(7):551-68. PubMed ID: 8528490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of impulse propagation at the microscopic level across geometrically defined expansions of excitable tissue: multiple site optical recording of transmembrane voltage (MSORTV) in patterned growth heart cell cultures.
    Rohr S; Salzberg BM
    J Gen Physiol; 1994 Aug; 104(2):287-309. PubMed ID: 7807050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple site optical recording of transmembrane voltage (MSORTV) in patterned growth heart cell cultures: assessing electrical behavior, with microsecond resolution, on a cellular and subcellular scale.
    Rohr S; Salzberg BM
    Biophys J; 1994 Sep; 67(3):1301-15. PubMed ID: 7811945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical recording of impulse propagation in designer cultures. Cardiac tissue architectures inducing ultra-slow conduction.
    Rohr S; Kléber AG; Kucera JP
    Trends Cardiovasc Med; 1999 Oct; 9(7):173-9. PubMed ID: 10881747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of the calcium inward current in cardiac impulse propagation: induction of unidirectional conduction block by nifedipine and reversal by Bay K 8644.
    Rohr S; Kucera JP
    Biophys J; 1997 Feb; 72(2 Pt 1):754-66. PubMed ID: 9017201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow conduction in cardiac tissue: insights from optical mapping at the cellular level.
    Kucera JP; Kléber AG; Rohr S
    J Electrocardiol; 2001; 34 Suppl():57-64. PubMed ID: 11781937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropic activation spread in heart cell monolayers assessed by high-resolution optical mapping. Role of tissue discontinuities.
    Fast VG; Darrow BJ; Saffitz JE; Kléber AG
    Circ Res; 1996 Jul; 79(1):115-27. PubMed ID: 8925559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of wavefront curvature in propagation of cardiac impulse.
    Fast VG; Kléber AG
    Cardiovasc Res; 1997 Feb; 33(2):258-71. PubMed ID: 9074688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Basic mechanisms of cardiac impulse propagation and associated arrhythmias.
    Kléber AG; Rudy Y
    Physiol Rev; 2004 Apr; 84(2):431-88. PubMed ID: 15044680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nature of electrical propagation in cardiac muscle.
    Spach MS; Kootsey JM
    Am J Physiol; 1983 Jan; 244(1):H3-22. PubMed ID: 6336913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Paradoxical improvement of impulse conduction in cardiac tissue by partial cellular uncoupling.
    Rohr S; Kucera JP; Fast VG; Kléber AG
    Science; 1997 Feb; 275(5301):841-4. PubMed ID: 9012353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The rate and anisotropy of impulse propagation in the postnatal terminal crest are correlated with remodeling of Cx43 gap junction pattern.
    Litchenberg WH; Norman LW; Holwell AK; Martin KL; Hewett KW; Gourdie RG
    Cardiovasc Res; 2000 Jan; 45(2):379-87. PubMed ID: 10728358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle. Evidence for electrical uncoupling of side-to-side fiber connections with increasing age.
    Spach MS; Dolber PC
    Circ Res; 1986 Mar; 58(3):356-71. PubMed ID: 3719925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unique properties of cardiac action potentials recorded with voltage-sensitive dyes.
    Girouard SD; Laurita KR; Rosenbaum DS
    J Cardiovasc Electrophysiol; 1996 Nov; 7(11):1024-38. PubMed ID: 8930734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterned growth of neonatal rat heart cells in culture. Morphological and electrophysiological characterization.
    Rohr S; Schölly DM; Kléber AG
    Circ Res; 1991 Jan; 68(1):114-30. PubMed ID: 1984856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical recording system based on a fiber optic image conduit: assessment of microscopic activation patterns in cardiac tissue.
    Rohr S; Kucera JP
    Biophys J; 1998 Aug; 75(2):1062-75. PubMed ID: 9675208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slow conduction in cardiac tissue, I: effects of a reduction of excitability versus a reduction of electrical coupling on microconduction.
    Rohr S; Kucera JP; Kléber AG
    Circ Res; 1998 Oct; 83(8):781-94. PubMed ID: 9776725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiac tissue geometry as a determinant of unidirectional conduction block: assessment of microscopic excitation spread by optical mapping in patterned cell cultures and in a computer model.
    Fast VG; Kléber AG
    Cardiovasc Res; 1995 May; 29(5):697-707. PubMed ID: 7606760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical measurement of cell-to-cell coupling in intact heart using subthreshold electrical stimulation.
    Akar FG; Roth BJ; Rosenbaum DS
    Am J Physiol Heart Circ Physiol; 2001 Aug; 281(2):H533-42. PubMed ID: 11454554
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.