These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 8529788)

  • 1. Significance of Autocrine and Paracrine Signaling for Energy Metabolism in Contracting Skeletal and Cardiac Muscle Tissues. Symposium proceedings. Buhlerhohe, Germany, September 3-4, 1994.
    Diabetes; 1996 Jan; 45 Suppl 1():S1-128. PubMed ID: 8529788
    [No Abstract]   [Full Text] [Related]  

  • 2. Exercise-beyond skeletal muscle energy metabolism.
    Garcia-Roves PM
    J Appl Physiol (1985); 2010 Jan; 108(1):224-4; author reply 226. PubMed ID: 20066763
    [No Abstract]   [Full Text] [Related]  

  • 3. In vivo modular control analysis of energy metabolism in contracting skeletal muscle.
    Arsac LM; Beuste C; Miraux S; Deschodt-Arsac V; Thiaudiere E; Franconi JM; Diolez PH
    Biochem J; 2008 Sep; 414(3):391-7. PubMed ID: 18498244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis of muscle performance.
    Billeter R; Oetliker H; Hoppeler H
    Adv Vet Sci Comp Med; 1994; 38A():57-124. PubMed ID: 7801836
    [No Abstract]   [Full Text] [Related]  

  • 5. Functional significance of membrane architecture in skeletal and cardiac muscle.
    Franzini-Armstrong C
    Soc Gen Physiol Ser; 1996; 51():3-18. PubMed ID: 8809930
    [No Abstract]   [Full Text] [Related]  

  • 6. Milestones in human physiology: Muscle energy metabolism and blood flow during contraction.
    Greenhaff PL
    J Physiol; 2003 Sep; 551(Pt 2):397-9. PubMed ID: 12897181
    [No Abstract]   [Full Text] [Related]  

  • 7. Adaptation of skeletal muscle to increased neuromuscular activity as induced by chronic low frequency stimulation.
    Pette D
    Scand J Rehabil Med Suppl; 1994; 30():7-18. PubMed ID: 7886430
    [No Abstract]   [Full Text] [Related]  

  • 8. A model of human muscle energy expenditure.
    Umberger BR; Gerritsen KG; Martin PE
    Comput Methods Biomech Biomed Engin; 2003 Apr; 6(2):99-111. PubMed ID: 12745424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relating mechanics and energetics during exercise.
    Taylor CR
    Adv Vet Sci Comp Med; 1994; 38A():181-215. PubMed ID: 7801832
    [No Abstract]   [Full Text] [Related]  

  • 10. Spatial Ca(2+) distribution in contracting skeletal and cardiac muscle cells.
    Zoghbi ME; Bolaños P; Villalba-Galea C; Marcano A; Hernández E; Fill M; Escobar AL
    Biophys J; 2000 Jan; 78(1):164-73. PubMed ID: 10620283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Invited Review: plasticity and energetic demands of contraction in skeletal and cardiac muscle.
    Sieck GC; Regnier M
    J Appl Physiol (1985); 2001 Mar; 90(3):1158-64. PubMed ID: 11181631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy turnover for Ca2+ cycling in skeletal muscle.
    Barclay CJ; Woledge RC; Curtin NA
    J Muscle Res Cell Motil; 2007; 28(4-5):259-74. PubMed ID: 17882515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Energy supply for muscular activity of five- to six-year-old children and complex assessment of physical working capacity].
    Krivolapchuk IA
    Fiziol Cheloveka; 2009; 35(2):76-87. PubMed ID: 19402557
    [No Abstract]   [Full Text] [Related]  

  • 14. Glycolysis in contracting rat skeletal muscle is controlled by factors related to energy state.
    Ortenblad N; Macdonald WA; Sahlin K
    Biochem J; 2009 May; 420(2):161-8. PubMed ID: 19250062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial uncoupling protein 3 and its role in cardiac- and skeletal muscle metabolism.
    Nabben M; Hoeks J
    Physiol Behav; 2008 May; 94(2):259-69. PubMed ID: 18191161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proceedings of the symposium Regulatory Proteins of Striated Muscle--Structure, Function and Disorder (33rd NIPS Conference), Okazaki, Japan, October 25-28, 2005.
    Adv Exp Med Biol; 2007; 592():x-xiii, 1-401. PubMed ID: 17326319
    [No Abstract]   [Full Text] [Related]  

  • 17. Dynamic MRS and MRI of skeletal muscle function and biomechanics.
    Prompers JJ; Jeneson JA; Drost MR; Oomens CC; Strijkers GJ; Nicolay K
    NMR Biomed; 2006 Nov; 19(7):927-53. PubMed ID: 17075956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Persisting in vitro actin motility at nanomolar adenosine triphosphate levels: comparison of skeletal and cardiac myosins.
    Kellermayer MS; Hinds TR; Pollack GH
    Physiol Chem Phys Med NMR; 1995; 27(3):167-78. PubMed ID: 8868577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fine-tuning metabolism--how products of contraction regulate skeletal muscle adaptation.
    Philp A; Baar K
    Am J Physiol Endocrinol Metab; 2012 Jun; 302(11):E1313-4. PubMed ID: 22436694
    [No Abstract]   [Full Text] [Related]  

  • 20. Bioenergetics of contracting skeletal muscle after partial reduction of blood flow.
    Hogan MC; Gladden LB; Grassi B; Stary CM; Samaja M
    J Appl Physiol (1985); 1998 Jun; 84(6):1882-8. PubMed ID: 9609780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.