These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 8529838)

  • 21. Phosphoryl group transfer: evolution of a catalytic scaffold.
    Allen KN; Dunaway-Mariano D
    Trends Biochem Sci; 2004 Sep; 29(9):495-503. PubMed ID: 15337123
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metal Fluorides as Analogues for Studies on Phosphoryl Transfer Enzymes.
    Jin Y; Richards NG; Waltho JP; Blackburn GM
    Angew Chem Int Ed Engl; 2017 Apr; 56(15):4110-4128. PubMed ID: 27862756
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transition state of the sulfuryl transfer reaction of estrogen sulfotransferase.
    Hoff RH; Czyryca PG; Sun M; Leyh TS; Hengge AC
    J Biol Chem; 2006 Oct; 281(41):30645-9. PubMed ID: 16899461
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of coenzyme A thioesters using methyl acyl phosphates in an aqueous medium.
    Pal M; Bearne SL
    Org Biomol Chem; 2014 Dec; 12(48):9760-3. PubMed ID: 25355071
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biological phosphoryl-transfer reactions: understanding mechanism and catalysis.
    Lassila JK; Zalatan JG; Herschlag D
    Annu Rev Biochem; 2011; 80():669-702. PubMed ID: 21513457
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Smooth solvation method for d-orbital semiempirical calculations of biological reactions. 2. Application to transphosphorylation thio effects in solution.
    Gregersen BA; Khandogin J; Thiel W; York DM
    J Phys Chem B; 2005 May; 109(19):9810-7. PubMed ID: 16852181
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Theoretical comparison of p-nitrophenyl phosphate and sulfate hydrolysis in aqueous solution: implications for enzyme-catalyzed sulfuryl transfer.
    Kamerlin SC
    J Org Chem; 2011 Nov; 76(22):9228-38. PubMed ID: 21981415
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Altered mechanisms of reactions of phosphate esters bridging a dinuclear metal center.
    Humphry T; Forconi M; Williams NH; Hengge AC
    J Am Chem Soc; 2004 Sep; 126(38):11864-9. PubMed ID: 15382921
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanistic studies of protein tyrosine phosphatases YopH and Cdc25A with m-nitrobenzyl phosphate.
    McCain DF; Grzyska PK; Wu L; Hengge AC; Zhang ZY
    Biochemistry; 2004 Jun; 43(25):8256-64. PubMed ID: 15209522
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermodynamic evaluation of a covalently bonded transition state analogue inhibitor: inhibition of beta-lactamases by phosphonates.
    Nagarajan R; Pratt RF
    Biochemistry; 2004 Aug; 43(30):9664-73. PubMed ID: 15274621
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Beta-secondary and solvent deuterium kinetic isotope effects on beta-lactamase catalysis.
    Adediran SA; Deraniyagala SA; Xu Y; Pratt RF
    Biochemistry; 1996 Mar; 35(11):3604-13. PubMed ID: 8639512
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of solvent nucleophile isotope effects: evidence for concerted mechanisms and nucleophilic activation by metal coordination in nonenzymatic and ribozyme-catalyzed phosphodiester hydrolysis.
    Cassano AG; Anderson VE; Harris ME
    Biochemistry; 2004 Aug; 43(32):10547-59. PubMed ID: 15301552
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sinapoyltransferases in the light of molecular evolution.
    Stehle F; Brandt W; Stubbs MT; Milkowski C; Strack D
    Phytochemistry; 2009; 70(15-16):1652-62. PubMed ID: 19695650
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of sulfur substitution for the nucleophile and bridging oxygen atoms in reactions of hydroxyalkyl phosphate esters.
    Iyer S; Hengge AC
    J Org Chem; 2008 Jul; 73(13):4819-29. PubMed ID: 18533704
    [TBL] [Abstract][Full Text] [Related]  

  • 35. δ-Deuterium isotope effects as probes for transition-state structures of isoprenoid substrates.
    Choi SR; Breugst M; Houk KN; Poulter CD
    J Org Chem; 2014 Apr; 79(8):3572-80. PubMed ID: 24665882
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Probing the origin of the compromised catalysis of E. coli alkaline phosphatase in its promiscuous sulfatase reaction.
    Catrina I; O'Brien PJ; Purcell J; Nikolic-Hughes I; Zalatan JG; Hengge AC; Herschlag D
    J Am Chem Soc; 2007 May; 129(17):5760-5. PubMed ID: 17411045
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The crystal structure of beryllofluoride Spo0F in complex with the phosphotransferase Spo0B represents a phosphotransfer pretransition state.
    Varughese KI; Tsigelny I; Zhao H
    J Bacteriol; 2006 Jul; 188(13):4970-7. PubMed ID: 16788205
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Examination of the transition state of the low-molecular mass small tyrosine phosphatase 1. Comparisons with other protein phosphatases.
    Hengge AC; Zhao Y; Wu L; Zhang ZY
    Biochemistry; 1997 Jun; 36(25):7928-36. PubMed ID: 9201938
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Understanding the rates of certain enzyme-catalyzed reactions: proton abstraction from carbon acids, acyl-transfer reactions, and displacement reactions of phosphodiesters.
    Gerlt JA; Gassman PG
    Biochemistry; 1993 Nov; 32(45):11943-52. PubMed ID: 8218268
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phosphoryl transfer in Ras proteins, conclusive or elusive?
    Wittinghofer A
    Trends Biochem Sci; 2006 Jan; 31(1):20-3. PubMed ID: 16356724
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.