These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 853029)

  • 41. Wet explosion of wheat straw and codigestion with swine manure: effect on the methane productivity.
    Wang G; Gavala HN; Skiadas IV; Ahring BK
    Waste Manag; 2009 Nov; 29(11):2830-5. PubMed ID: 19666217
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Features of a Clostridium, strain CV-AA1, an obligatory anaerobic bacterium producing acetic acid from methanol.
    Adamse AD; Velzeboer CT
    Antonie Van Leeuwenhoek; 1982; 48(4):305-13. PubMed ID: 7149697
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effect of microorganisms on phytotoxicity of herbicides. I. Complex activity of some pesticides on plants.
    Balicka N; Musial M
    Acta Microbiol Pol B; 1972; 4(4):183-90. PubMed ID: 4118851
    [No Abstract]   [Full Text] [Related]  

  • 44. [Microbial formation of humus. 7. Communication. Effect of aerobic and anaerobic preincubation on humufication].
    Novák B
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1971; 126(3):286-97. PubMed ID: 5170898
    [No Abstract]   [Full Text] [Related]  

  • 45. [Effect of rotting corn straw on the development of bacteria of the Azotobacter group].
    Soriano S; Amor Asunción MJ; Cusato M
    Rev Asoc Argent Microbiol; 1975; 7(2):56-60. PubMed ID: 1208902
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of Hydraulic Retention Time on Anaerobic Digestion of Wheat Straw in the Semicontinuous Continuous Stirred-Tank Reactors.
    Shi XS; Dong JJ; Yu JH; Yin H; Hu SM; Huang SX; Yuan XZ
    Biomed Res Int; 2017; 2017():2457805. PubMed ID: 28589134
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Anaerobic oxalate consumption by microorganisms in forest soils.
    Daniel SL; Pilsl C; Drake HL
    Res Microbiol; 2007 Apr; 158(3):303-9. PubMed ID: 17350229
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Temperature impacts differentially on the methanogenic food web of cellulose-supplemented peatland soil.
    Schmidt O; Horn MA; Kolb S; Drake HL
    Environ Microbiol; 2015 Mar; 17(3):720-34. PubMed ID: 24813682
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Acetic acid and hydrogen metabolism during coculture of an acetic acid producing bacterium with methanogenic bacteria.
    Patel GB; Roth LA
    Can J Microbiol; 1978 Aug; 24(8):1007-10. PubMed ID: 688097
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phytin hydrolyzing bacteria in soil and rhizosphere of wheat and broad bean in soils of Egypt.
    Mahmoud SA; Abdel-Hafez AM; el-Sawy M; Hanafy EA
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1973; 128(5):528-31. PubMed ID: 4801558
    [No Abstract]   [Full Text] [Related]  

  • 51. Bioconversion of wheat straw and wheat straw components into single-cell protein.
    Chahal DS; Moo-Young M; Dhillon GS
    Can J Microbiol; 1979 Jul; 25(7):793-7. PubMed ID: 38899
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phenolphthalein diphosphate splitting bacteria in soil and rhizosphere of wheat and broad bean in soils of Egypt.
    Mahmoud SA; Abdel-Hafez AM; el-Sawy M; Hanafy EA
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1973; 128(5):524-7. PubMed ID: 4801557
    [No Abstract]   [Full Text] [Related]  

  • 53. Straw- and slurry-associated prokaryotic communities differ during co-fermentation of straw and swine manure.
    Li J; Rui J; Pei Z; Sun X; Zhang S; Yan Z; Wang Y; Liu X; Zheng T; Li X
    Appl Microbiol Biotechnol; 2014 May; 98(10):4771-80. PubMed ID: 24633443
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Succinic acid production from orange peel and wheat straw by batch fermentations of Fibrobacter succinogenes S85.
    Li Q; Siles JA; Thompson IP
    Appl Microbiol Biotechnol; 2010 Oct; 88(3):671-8. PubMed ID: 20645087
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Isolation and characterization of N
    Xu J; Kloepper JW; Huang P; McInroy JA; Hu CH
    J Basic Microbiol; 2018 May; 58(5):459-471. PubMed ID: 29473969
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Impairment of cellulose- and cellobiose-degrading soil Bacteria by two acidic herbicides.
    Schellenberger S; Drake HL; Kolb S
    FEMS Microbiol Lett; 2012 Feb; 327(1):60-5. PubMed ID: 22098368
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Studies on bacterial activities in aerobic and anaerobic waste water purification.
    Adamse AD; Deinema MH; Zehnder AJ
    Antonie Van Leeuwenhoek; 1984; 50(5-6):665-82. PubMed ID: 6397134
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of a bacterium of the genus Azospirillum from cellulolytic nitrogen-fixing mixed cultures.
    Wong PP; Stenberg NE; Edgar L
    Can J Microbiol; 1980 Mar; 26(3):291-6. PubMed ID: 6773649
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Volatile organic compounds and microorganisms.
    Stotzky G; Schenck S
    CRC Crit Rev Microbiol; 1976 May; 4(4):333-82. PubMed ID: 780055
    [No Abstract]   [Full Text] [Related]  

  • 60. Microscale analysis of in vitro anaerobic degradation of lignocellulosic wastes by rumen microorganisms.
    Hu ZH; Liu SY; Yue ZB; Yan LF; Yang MT; Yu HQ
    Environ Sci Technol; 2008 Jan; 42(1):276-81. PubMed ID: 18350908
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.