These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 853034)

  • 1. Efficiency of oxidative phosphorylation in continous cultures of Candida parapsilosis.
    Rogers PJ
    J Bacteriol; 1977 Apr; 130(1):521-3. PubMed ID: 853034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. YATP value in Candida tropicalis grown on n-alkanes, fatty acids, and acetate.
    Gallo M; Azoulay E
    Biotechnol Bioeng; 1975 Dec; 17(12):1705-15. PubMed ID: 1203460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems.
    Ebenhöh O; Heinrich R
    Bull Math Biol; 2001 Jan; 63(1):21-55. PubMed ID: 11146883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leukocyte energy metabolism. 3. Anaerobic and aerobic ATP production and related enzymes.
    Jemelin M; Frei J
    Enzymol Biol Clin (Basel); 1970; 11(4):298-323. PubMed ID: 5309719
    [No Abstract]   [Full Text] [Related]  

  • 5. Mitochondria.
    Chandel NS
    Cold Spring Harb Perspect Biol; 2021 Mar; 13(3):. PubMed ID: 33649187
    [No Abstract]   [Full Text] [Related]  

  • 6. Glucose degradation, molar growth yields, and evidence for oxidative phosphorylation in Streptococcus agalactiae.
    Mickelson MN
    J Bacteriol; 1972 Jan; 109(1):96-105. PubMed ID: 4550679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteoblast-like MC3T3-E1 Cells Prefer Glycolysis for ATP Production but Adipocyte-like 3T3-L1 Cells Prefer Oxidative Phosphorylation.
    Guntur AR; Gerencser AA; Le PT; DeMambro VE; Bornstein SA; Mookerjee SA; Maridas DE; Clemmons DE; Brand MD; Rosen CJ
    J Bone Miner Res; 2018 Jun; 33(6):1052-1065. PubMed ID: 29342317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DEPENDENCE OF RNA SYNTHESIS IN ISOLATED THYMUS NUCLEI ON GLYCOLYSIS, OXIDATIVE CARBOHYDRATE CATABOLISM AND A TYPE OF "OXIDATIVE PHOSPHORYLATION".
    MCEWEN BS; ALLFREY VG; MIRSKY AE
    Biochim Biophys Acta; 1964 Sep; 91():23-8. PubMed ID: 14227275
    [No Abstract]   [Full Text] [Related]  

  • 9. The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases.
    Rueda EM; Johnson JE; Giddabasappa A; Swaroop A; Brooks MJ; Sigel I; Chaney SY; Fox DA
    Mol Vis; 2016; 22():847-85. PubMed ID: 27499608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the mechanism of regulation of cellular respiration. The dependence of respiration on the cytosolic [ATP],[ADP] and [PI].
    Erecińska M; Wilson DF
    Adv Exp Med Biol; 1977 Jul 4-7; 94():271-8. PubMed ID: 566024
    [No Abstract]   [Full Text] [Related]  

  • 11. Pyruvate attenuates the anti-neoplastic effect of carnosine independently from oxidative phosphorylation.
    Oppermann H; Schnabel L; Meixensberger J; Gaunitz F
    Oncotarget; 2016 Dec; 7(52):85848-85860. PubMed ID: 27811375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Negative Feedback of Glycolysis and Oxidative Phosphorylation: Mechanisms of and Reasons for It.
    Sokolov SS; Balakireva AV; Markova OV; Severin FF
    Biochemistry (Mosc); 2015 May; 80(5):559-64. PubMed ID: 26071773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Mathematical model for carbohydrate energy metabolism. Mechanism of the Pasteur effect].
    Khainrikh R; Dynnik VV; Sel'kov EE
    Biokhimiia; 1980 Jun; 45(6):963-73. PubMed ID: 6452176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The metabolic function of oxygen and biochemical lesions of hypoxia.
    Cohen PJ
    Anesthesiology; 1972 Aug; 37(2):148-77. PubMed ID: 4557886
    [No Abstract]   [Full Text] [Related]  

  • 15. The energetic growth yields of the yeast Candida parapsilosis.
    Camougrand N; Velours G; Guerin M
    Biol Cell; 1987; 61(3):171-5. PubMed ID: 2965946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of inosine and glucose as a substrate for energy metabolism in isolated rat-thymus nuclei.
    Konings AW
    Biochim Biophys Acta; 1969 Sep; 189(1):125-8. PubMed ID: 5822418
    [No Abstract]   [Full Text] [Related]  

  • 17. Control of energy metabolism in platelets. A comparison of aerobic and anaerobic metabolism in washed rat platelets.
    Detwiler TC; Zivkovic RV
    Biochim Biophys Acta; 1970 Mar; 197(2):117-26. PubMed ID: 4244492
    [No Abstract]   [Full Text] [Related]  

  • 18. Relationship between coronary flow and adenosine triphosphate production from glycolysis and oxidative metabolism.
    Neely JR; Liedtke AJ; Whitmer JT; Rovetto MJ
    Recent Adv Stud Cardiac Struct Metab; 1975; 8():301-21. PubMed ID: 1215640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The self-assembled α-lactalbumin-oleic acid complex inhibits ATP supply from both glycolysis and the TCA cycle in HepG2 cells and HepG2-bearing nude mice.
    Fang B; Yang ZX; Ren FZ
    Int J Biol Macromol; 2020 Sep; 159():258-263. PubMed ID: 32389653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [ATP yield from yeasts of the genera Candida and Torulopsis cultured in a chemostat on a methanol medium].
    Kuiumdzhieva A; Denchev D
    Acta Microbiol Bulg; 1984; 15():50-5. PubMed ID: 6541423
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.