BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 8530401)

  • 1. A physiological role for Saccharomyces cerevisiae copper/zinc superoxide dismutase in copper buffering.
    Culotta VC; Joh HD; Lin SJ; Slekar KH; Strain J
    J Biol Chem; 1995 Dec; 270(50):29991-7. PubMed ID: 8530401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ACE1, a copper-dependent transcription factor, activates expression of the yeast copper, zinc superoxide dismutase gene.
    Gralla EB; Thiele DJ; Silar P; Valentine JS
    Proc Natl Acad Sci U S A; 1991 Oct; 88(19):8558-62. PubMed ID: 1924315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of oxidative damage by Saccharomyces cerevisiae ATX2, which encodes a manganese-trafficking protein that localizes to Golgi-like vesicles.
    Lin SJ; Culotta VC
    Mol Cell Biol; 1996 Nov; 16(11):6303-12. PubMed ID: 8887660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yeast and mammalian metallothioneins functionally substitute for yeast copper-zinc superoxide dismutase.
    Tamai KT; Gralla EB; Ellerby LM; Valentine JS; Thiele DJ
    Proc Natl Acad Sci U S A; 1993 Sep; 90(17):8013-7. PubMed ID: 8367458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The requirement for yeast superoxide dismutase is bypassed through mutations in BSD2, a novel metal homeostasis gene.
    Liu XF; Culotta VC
    Mol Cell Biol; 1994 Nov; 14(11):7037-45. PubMed ID: 7935419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced effectiveness of copper ion buffering by CUP1 metallothionein compared with CRS5 metallothionein in Saccharomyces cerevisiae.
    Jensen LT; Howard WR; Strain JJ; Winge DR; Culotta VC
    J Biol Chem; 1996 Aug; 271(31):18514-9. PubMed ID: 8702498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations in PMR1 suppress oxidative damage in yeast cells lacking superoxide dismutase.
    Lapinskas PJ; Cunningham KW; Liu XF; Fink GR; Culotta VC
    Mol Cell Biol; 1995 Mar; 15(3):1382-8. PubMed ID: 7862131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of metallothionein genes by the ACE1 and AMT1 transcription factors.
    Thorvaldsen JL; Sewell AK; McCowen CL; Winge DR
    J Biol Chem; 1993 Jun; 268(17):12512-8. PubMed ID: 8509391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cytoplasmic Cu,Zn superoxide dismutase of saccharomyces cerevisiae is required for resistance to freeze-thaw stress. Generation of free radicals during freezing and thawing.
    Park JI; Grant CM; Davies MJ; Dawes IW
    J Biol Chem; 1998 Sep; 273(36):22921-8. PubMed ID: 9722512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic and biochemical characterization of Cu,Zn superoxide dismutase mutants in Saccharomyces cerevisiae.
    Chang EC; Crawford BF; Hong Z; Bilinski T; Kosman DJ
    J Biol Chem; 1991 Mar; 266(7):4417-24. PubMed ID: 1999425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ATX1 gene of Saccharomyces cerevisiae encodes a small metal homeostasis factor that protects cells against reactive oxygen toxicity.
    Lin SJ; Culotta VC
    Proc Natl Acad Sci U S A; 1995 Apr; 92(9):3784-8. PubMed ID: 7731983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRS5 encodes a metallothionein-like protein in Saccharomyces cerevisiae.
    Culotta VC; Howard WR; Liu XF
    J Biol Chem; 1994 Oct; 269(41):25295-302. PubMed ID: 7929222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial protein oxidation in yeast mutants lacking manganese-(MnSOD) or copper- and zinc-containing superoxide dismutase (CuZnSOD): evidence that MnSOD and CuZnSOD have both unique and overlapping functions in protecting mitochondrial proteins from oxidative damage.
    O'Brien KM; Dirmeier R; Engle M; Poyton RO
    J Biol Chem; 2004 Dec; 279(50):51817-27. PubMed ID: 15385544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for a novel role of copper-zinc superoxide dismutase in zinc metabolism.
    Wei JP; Srinivasan C; Han H; Valentine JS; Gralla EB
    J Biol Chem; 2001 Nov; 276(48):44798-803. PubMed ID: 11581253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of superoxide dismutase deficiency on cadmium stress.
    Adamis PD; Gomes DS; Pereira MD; Freire de Mesquita J; Pinto ML; Panek AD; Eleutherio EC
    J Biochem Mol Toxicol; 2004; 18(1):12-7. PubMed ID: 14994274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Saccharomyces cerevisiae copper transport protein (Ctr1p). Biochemical characterization, regulation by copper, and physiologic role in copper uptake.
    Dancis A; Haile D; Yuan DS; Klausner RD
    J Biol Chem; 1994 Oct; 269(41):25660-7. PubMed ID: 7929270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and functional characterization of the copper/zinc superoxide dismutase gene from the heavy-metal-tolerant yeast Cryptococcus liquefaciens strain N6.
    Kanamasa S; Sumi K; Yamuki N; Kumasaka T; Miura T; Abe F; Kajiwara S
    Mol Genet Genomics; 2007 Apr; 277(4):403-12. PubMed ID: 17160414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional activation in yeast in response to copper deficiency involves copper-zinc superoxide dismutase.
    Wood LK; Thiele DJ
    J Biol Chem; 2009 Jan; 284(1):404-413. PubMed ID: 18977757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superoxide dismutase protects ribonucleotide reductase from inactivation in yeast.
    Das AB; Sadowska-Bartosz I; Königstorfer A; Kettle AJ; Winterbourn CC
    Free Radic Biol Med; 2018 Feb; 116():114-122. PubMed ID: 29305896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yeast copper-zinc superoxide dismutase can be activated in the absence of its copper chaperone.
    Sea KW; Sheng Y; Lelie HL; Kane Barnese L; Durazo A; Valentine JS; Gralla EB
    J Biol Inorg Chem; 2013 Dec; 18(8):985-92. PubMed ID: 24061560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.