These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 853046)

  • 21. Strengthening of synchronized activity by tetanic stimulation in cortical cultures: application of planar electrode arrays.
    Jimbo Y; Robinson HP; Kawana A
    IEEE Trans Biomed Eng; 1998 Nov; 45(11):1297-304. PubMed ID: 9805828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biocompatibility of silicon-based electrode arrays implanted in feline cortical tissue.
    Schmidt S; Horch K; Normann R
    J Biomed Mater Res; 1993 Nov; 27(11):1393-9. PubMed ID: 8263001
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An economical multi-channel cortical electrode array for extended periods of recording during behavior.
    Rennaker RL; Ruyle AM; Street SE; Sloan AM
    J Neurosci Methods; 2005 Mar; 142(1):97-105. PubMed ID: 15652622
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs.
    Majji AB; Humayun MS; Weiland JD; Suzuki S; D'Anna SA; de Juan E
    Invest Ophthalmol Vis Sci; 1999 Aug; 40(9):2073-81. PubMed ID: 10440263
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrated circuit amplifiers for multi-electrode intracortical recording.
    Jochum T; Denison T; Wolf P
    J Neural Eng; 2009 Feb; 6(1):012001. PubMed ID: 19139560
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rigid and flexible thin-film multielectrode arrays for transmural cardiac recording.
    Mastrototaro JJ; Massoud HZ; Pilkington TC; Ideker RE
    IEEE Trans Biomed Eng; 1992 Mar; 39(3):271-9. PubMed ID: 1555857
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Linear electrode arrays for stimulation and recording within cardiac tissue space constants.
    Pollard AE; Ellis CD; Smith WM
    IEEE Trans Biomed Eng; 2008 Apr; 55(4):1408-14. PubMed ID: 18390332
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microelectrode array fabrication by electrical discharge machining and chemical etching.
    Fofonoff TA; Martel SM; Hatsopoulos NG; Donoghue JP; Hunter IW
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):890-5. PubMed ID: 15188855
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays.
    Shein M; Greenbaum A; Gabay T; Sorkin R; David-Pur M; Ben-Jacob E; Hanein Y
    Biomed Microdevices; 2009 Apr; 11(2):495-501. PubMed ID: 19067173
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo electrical stimulation of rabbit retina with a microfabricated array: strategies to maximize responses for prospective assessment of stimulus efficacy and biocompatibility.
    Rizzo JF; Goldbaum S; Shahin M; Denison TJ; Wyatt J
    Restor Neurol Neurosci; 2004; 22(6):429-43. PubMed ID: 15798362
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Penetrating multichannel stimulation and recording electrodes in auditory prosthesis research.
    Anderson DJ
    Hear Res; 2008 Aug; 242(1-2):31-41. PubMed ID: 18343062
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [The amplitude principle of the structural-functional classification of cortical neurons].
    Gasanov UG
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1986; 36(1):3-11. PubMed ID: 3518276
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of implantable microelectrode arrays by laser cutting of silicone rubber and platinum foil.
    Schuettler M; Stiess S; King BV; Suaning GJ
    J Neural Eng; 2005 Mar; 2(1):S121-8. PubMed ID: 15876647
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Paroxysmal changes in the electrochemical activity of the cerebral cortex on platinum electrodes].
    Shvets-Teneta-Guriĭ TB
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1980; 30(5):1021-9. PubMed ID: 7445729
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biocompatible benzocyclobutene (BCB)-based neural implants with micro-fluidic channel.
    Lee K; He J; Clement R; Massia S; Kim B
    Biosens Bioelectron; 2004 Sep; 20(2):404-7. PubMed ID: 15308247
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stimulation through electrodes implanted near the subthalamic nucleus activates projections to motor areas of cerebral cortex in patients with Parkinson's disease.
    MacKinnon CD; Webb RM; Silberstein P; Tisch S; Asselman P; Limousin P; Rothwell JC
    Eur J Neurosci; 2005 Mar; 21(5):1394-402. PubMed ID: 15813949
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In-vivo implant mechanics of flexible, silicon-based ACREO microelectrode arrays in rat cerebral cortex.
    Jensen W; Yoshida K; Hofmann UG
    IEEE Trans Biomed Eng; 2006 May; 53(5):934-40. PubMed ID: 16686416
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extracellular voltage profile for reversing the recruitment order of peripheral nerve stimulation: a simulation study.
    Lertmanorat Z; Durand DM
    J Neural Eng; 2004 Dec; 1(4):202-11. PubMed ID: 15876640
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrocorticographic high gamma activity versus electrical cortical stimulation mapping of naming.
    Sinai A; Bowers CW; Crainiceanu CM; Boatman D; Gordon B; Lesser RP; Lenz FA; Crone NE
    Brain; 2005 Jul; 128(Pt 7):1556-70. PubMed ID: 15817517
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A floating metal microelectrode array for chronic implantation.
    Musallam S; Bak MJ; Troyk PR; Andersen RA
    J Neurosci Methods; 2007 Feb; 160(1):122-7. PubMed ID: 17067683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.