These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 8530553)
1. Cholinergic projection from the basal forebrain and cerebral glucose metabolism in rats: a dynamic PET study. Ouchi Y; Fukuyama H; Ogawa M; Yamauchi H; Kimura J; Magata Y; Yonekura Y; Konishi J J Cereb Blood Flow Metab; 1996 Jan; 16(1):34-41. PubMed ID: 8530553 [TBL] [Abstract][Full Text] [Related]
2. Uncoupling between cortical glucose metabolism and blood flow after ibotenate lesion of the rat basal forebrain: a PET study. Ogawa M; Fukuyama H; Ouchi Y; Yamauchi H; Matsuzaki S; Kimura J; Tsukada H Neurosci Lett; 1996 Feb; 204(3):193-6. PubMed ID: 8938263 [TBL] [Abstract][Full Text] [Related]
3. Compartment analysis of cerebral glucose metabolism and in vitro glucose-metabolizing enzyme activities in the rat brain. Ouchi Y; Fukuyama H; Matsuzaki S; Ogawa M; Kimura J; Tsukada H; Kakiuchi T; Kosugi T; Nishiyama S Brain Res; 1996 Jan; 706(2):267-72. PubMed ID: 8822366 [TBL] [Abstract][Full Text] [Related]
5. The effect of aniracetam on cerebral glucose metabolism in rats after lesioning of the basal forebrain measured by PET. Ouchi Y; Kakiuchi T; Okada H; Nishiyama S; Tsukada H J Neurol Sci; 1999 Mar; 164(1):7-12. PubMed ID: 10385041 [TBL] [Abstract][Full Text] [Related]
6. The effect of sequential lesioning in the basal forebrain on cerebral cortical glucose metabolism in rats. An animal positron emission tomography study. Katsumi Y; Hanakawa T; Fukuyama H; Hayashi T; Nagahama Y; Yamauchi H; Ouchi Y; Tsukada H; Shibasaki H Brain Res; 1999 Aug; 837(1-2):75-82. PubMed ID: 10433990 [TBL] [Abstract][Full Text] [Related]
7. Time course of effects of unilateral lesions of the nucleus basalis of Meynert on glucose utilization by the cerebral cortex. Positron tomography in baboons. Kiyosawa M; Baron JC; Hamel E; Pappata S; Duverger D; Riche D; Mazoyer B; Naquet R; MacKenzie ET Brain; 1989 Apr; 112 ( Pt 2)():435-55. PubMed ID: 2784988 [TBL] [Abstract][Full Text] [Related]
8. Regional kinetic constants and cerebral metabolic rate for glucose in normal human volunteers determined by dynamic positron emission tomography of [18F]-2-fluoro-2-deoxy-D-glucose. Heiss WD; Pawlik G; Herholz K; Wagner R; Göldner H; Wienhard K J Cereb Blood Flow Metab; 1984 Jun; 4(2):212-23. PubMed ID: 6609929 [TBL] [Abstract][Full Text] [Related]
9. Interregional correlations of glucose metabolism between the basal ganglia and different cortical areas: an ultra-high resolution PET/MRI fusion study using 18F-FDG. Kim JH; Son YD; Kim JM; Kim HK; Kim YB; Lee C; Oh CH Braz J Med Biol Res; 2017 Nov; 51(1):e6724. PubMed ID: 29160415 [TBL] [Abstract][Full Text] [Related]
10. Long-term effects of cholinergic basal forebrain lesions on neuropeptide Y and somatostatin immunoreactivity in rat neocortex. Gaykema RP; Compaan JC; Nyakas C; Horvath E; Luiten PG Brain Res; 1989 Jun; 489(2):392-6. PubMed ID: 2568159 [TBL] [Abstract][Full Text] [Related]
11. Effects of lesions in the substantia innominata on active avoidance task and cerebral glucose metabolism. Mihara B Keio J Med; 1989 Dec; 38(4):419-31. PubMed ID: 2630780 [TBL] [Abstract][Full Text] [Related]
12. GM1 ganglioside protects nucleus basalis from excitotoxin damage: reduced cortical cholinergic losses and animal mortality. Mahadik SP; Vilim F; Korenovsky A; Karpiak SE J Neurosci Res; 1988 Aug; 20(4):479-83. PubMed ID: 3184210 [TBL] [Abstract][Full Text] [Related]
13. PET study of cerebral glucose metabolism and fluorodopa uptake in patients with corticobasal degeneration. Nagasawa H; Tanji H; Nomura H; Saito H; Itoyama Y; Kimura I; Tuji S; Fujiwara T; Iwata R; Itoh M; Ido T J Neurol Sci; 1996 Aug; 139(2):210-7. PubMed ID: 8856655 [TBL] [Abstract][Full Text] [Related]
14. Reduced glucose metabolism in the frontal cortex and basal ganglia of multiple sclerosis patients with fatigue: a 18F-fluorodeoxyglucose positron emission tomography study. Roelcke U; Kappos L; Lechner-Scott J; Brunnschweiler H; Huber S; Ammann W; Plohmann A; Dellas S; Maguire RP; Missimer J; Radü EW; Steck A; Leenders KL Neurology; 1997 Jun; 48(6):1566-71. PubMed ID: 9191767 [TBL] [Abstract][Full Text] [Related]
15. Effects of damage to the basal forebrain on brain glucose utilization: a reevaluation using positron emission tomography in baboons with extensive unilateral excitotoxic lesion. Le Mestric C; Chavoix C; Chapon F; Mézenge F; Epelbaum J; Baron JC J Cereb Blood Flow Metab; 1998 May; 18(5):476-90. PubMed ID: 9591840 [TBL] [Abstract][Full Text] [Related]
16. Decreased cerebral glucose metabolism in patients with brain tumors: an effect of corticosteroids. Fulham MJ; Brunetti A; Aloj L; Raman R; Dwyer AJ; Di Chiro G J Neurosurg; 1995 Oct; 83(4):657-64. PubMed ID: 7674016 [TBL] [Abstract][Full Text] [Related]
17. Choline acetyltransferase activity associated with cerebral cortical microvessels does not originate in basal forebrain neurons. Galea E; Fernández-Shaw C; Triguero D; Estrada C J Cereb Blood Flow Metab; 1991 Sep; 11(5):875-8. PubMed ID: 1874821 [TBL] [Abstract][Full Text] [Related]
18. Functional sites of neuroleptic drug action in the human brain: PET/FDG studies with and without haloperidol. Holcomb HH; Cascella NG; Thaker GK; Medoff DR; Dannals RF; Tamminga CA Am J Psychiatry; 1996 Jan; 153(1):41-9. PubMed ID: 8540590 [TBL] [Abstract][Full Text] [Related]
19. Dissociative effects of ibotenic and quisqualic acid-induced basal forebrain lesions on cortical acetylcholinesterase-positive fiber density and cytochrome oxidase activity. Sarter M; Dudchenko P Neuroscience; 1991; 41(2-3):729-38. PubMed ID: 1651463 [TBL] [Abstract][Full Text] [Related]
20. Cerebral Glucose Metabolism Assessment in Rat Models of Alzheimer's Disease: An 18F-FDG-PET Study. Lu Y; Ren J; Cui S; Chen J; Huang Y; Tang C; Shan B; Nie B; Xinsheng L Am J Alzheimers Dis Other Demen; 2016 Jun; 31(4):333-40. PubMed ID: 26631686 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]