BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 8531122)

  • 21. Effects of variation in the dietary supply of cysteine and methionine on liver concentration of glutathione and "active sulfate" (PAPS) and serum levels of sulfate, cystine, methionine and taurine: relation to the metabolism of acetaminophen.
    Glazenburg EJ; Jekel-Halsema IM; Scholtens E; Baars AJ; Mulder GJ
    J Nutr; 1983 Jul; 113(7):1363-73. PubMed ID: 6864334
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hepatic uptake of p-nitrophenyl sulfate by transporter that acetaminophen sulfate shares for uptake: sulfate moiety as a vector for metabolite transport.
    Sakuma-Sawada N; Iida S; Mizuma T; Hayashi M; Awazu S
    Res Commun Mol Pathol Pharmacol; 1997 Aug; 97(2):131-8. PubMed ID: 9344226
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetics of sulfation in the rat in vivo and in the perfused rat liver.
    Mulder GJ
    Fed Proc; 1986 Jul; 45(8):2229-34. PubMed ID: 3087784
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alteration in the biliary and urinary excretion of acetaminophen metabolites by nephrotoxicants in rats.
    Seo KW; Choung SY; Park KS; Kim HJ
    Res Commun Mol Pathol Pharmacol; 1997 Mar; 95(3):305-17. PubMed ID: 9144837
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dose-dependent intestinal glucuronidation and sulfation of acetaminophen in the rat in situ.
    Goon D; Klaassen CD
    J Pharmacol Exp Ther; 1990 Jan; 252(1):201-7. PubMed ID: 2299589
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of molybdate and pentachlorophenol on the sulfation of dehydroepiandrosterone.
    Boles JW; Klaassen CD
    Toxicol Appl Pharmacol; 1998 Jul; 151(1):105-9. PubMed ID: 9705892
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of sulfhydryl-deficient diets on hepatic metallothionein, glutathione, and adenosine 3'-phosphate 5'-phosphosulfate (PAPS) levels in rats.
    Sendelbach LE; White CA; Howell S; Gregus Z; Klaassen CD
    Toxicol Appl Pharmacol; 1990 Feb; 102(2):259-67. PubMed ID: 2300970
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measurement of contribution from intracellular cysteine to sulfate in phosphoadenosine phosphosulfate in rat ovarian granulosa cells.
    Imai Y; Yanagishita M; Hascall VC
    Arch Biochem Biophys; 1994 Aug; 312(2):392-400. PubMed ID: 8037451
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protective effects of MESNA (2-mercaptoethane sulphonate) against acetaminophen-induced hepatorenal oxidative damage in mice.
    Sener G; Sehirli O; Cetinel S; Yeğen BG; Gedik N; Ayanoğlu-Dülger G
    J Appl Toxicol; 2005; 25(1):20-9. PubMed ID: 15669031
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous measurements of glutathione and activated sulphate (PAPS) synthesis rates and the effects of selective inhibition of glutathione conjugation or sulphation of acetaminophen.
    Dalhoff K; Poulsen HE
    Biochem Pharmacol; 1993 Aug; 46(3):383-8. PubMed ID: 8347163
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of acetylsalicylic acid, paracetamol and caffeine and a combination of these substances on kidney glutathione levels.
    Engelhardt G; Homma D
    Arzneimittelforschung; 1996 May; 46(5):513-8. PubMed ID: 8737638
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of adenosine 3'-phosphate 5'-phosphosulfate concentrations in tissues from different laboratory animals.
    Brzeznicka EA; Hazelton GA; Klaassen CD
    Drug Metab Dispos; 1987; 15(1):133-5. PubMed ID: 2881750
    [No Abstract]   [Full Text] [Related]  

  • 33. Identification and partial purification of PAPS translocase.
    Ozeran JD; Westley J; Schwartz NB
    Biochemistry; 1996 Mar; 35(12):3695-703. PubMed ID: 8619989
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The differential effects of hepatotoxicants on the sulfation pathway in rats.
    Maziasz TJ; Liu J; Madhu C; Klaassen CD
    Toxicol Appl Pharmacol; 1991 Sep; 110(3):365-73. PubMed ID: 1949007
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sulfatide synthesis in mice with defective synthesis of 3'-phosphoadenosine 5'-phosphosulfate.
    Tennekoon G; Zaruba M; Shimomura K; Kishimoto Y
    Neurosci Lett; 1983 Jun; 37(3):295-9. PubMed ID: 6577314
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biliary excretion of acetaminophen in diabetic and hyperthyroid rats.
    Siegers CP; Loeser W; Younes M
    Res Commun Chem Pathol Pharmacol; 1985 Mar; 47(3):345-55. PubMed ID: 3158040
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contrasting changes in phase I and phase II metabolism of acetaminophen in male mice pretreated with carbon tetrachloride.
    Yim HK; Jung YS; Kim SY; Kim YC
    Basic Clin Pharmacol Toxicol; 2006 Feb; 98(2):225-30. PubMed ID: 16445600
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Production and application of 3-phosphoadenosine-5- phosphosulfate].
    Zhou Z; Du G; Kang Z
    Sheng Wu Gong Cheng Xue Bao; 2019 Jul; 35(7):1222-1233. PubMed ID: 31328479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of sulfur-amino acid-deficient diets on acetaminophen metabolism and hepatotoxicity in rats.
    Price VF; Jollow DJ
    Toxicol Appl Pharmacol; 1989 Nov; 101(2):356-69. PubMed ID: 2815088
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism of acetaminophen-induced hepatotoxicity: covalent binding versus oxidative stress.
    Gibson JD; Pumford NR; Samokyszyn VM; Hinson JA
    Chem Res Toxicol; 1996; 9(3):580-5. PubMed ID: 8728501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.